RESEARCH ARTICLE

On Contra Semi Weakly g^*-Continuous Functions in Topological Spaces

C. Mukundhan * and N. Nagaveni †

* Department of Mathematics, Bharathiar University, Coimbatore, Tamilnadu, India.
† Department of Mathematics, CIT, Coimbatore, Tamilnadu, India.

(Received: 24 August 2011, Accepted: 25 October 2011)

In this paper, we introduce the new class of weaker form of contra semi weakly g^*-continuous functions in topological spaces and study some of their properties.

Keywords: Contra semi weakly g^*-continuous maps.
AMS Subject Classification: 54C05, 54C08.

1. Introduction

Andrew and Whittlesey [15] introduced the notion of closure continuity. The δ-continuity was introduced by Noiri [16]. In this paper we introduce new class of maps called contra semi weakly g^*-continuous maps which included the class of generalized continuous maps. Throughout this paper (X, τ) is a topological space A is a subset of (X, τ). The closure of A and interior of A are denoted by $\text{Cl}(A)$ and $\text{Int}(A)$, respectively.

2. Preliminaries

Let us recall the following definitions which are useful in the sequel.

Definition 2.1 Let (X, τ) be a topological space. A subset A of X is said to be semi-open set [17] if $A \subseteq \text{Cl}(\text{Int}(A))$ and a semi closed set if $\text{Int}(\text{Cl}(A)) \subseteq A$.

* Corresponding author
Email: mukundhan1976@gmail.com
Definition 2.2 Let \((X, \tau)\) be a topological space. A sub set \(A\) of \(X\) is said to be preopen set \([10]\) if \(A \subseteq \text{Int}(\text{Cl}(A))\) and a preclosed set if \(\text{Cl}(\text{Int}(A)) \subseteq A\).

Definition 2.3 Let \((X, \tau)\) be a topological space. A sub set \(A\) of \(X\) is said to be \(\alpha\)-open set \([18]\) if \(A \subseteq \text{Int}(\text{Cl}(A))\) and a \(\alpha\)-closed set if \(\text{Cl}(\text{Int}(A)) \subseteq A\).

Definition 2.4 Let \((X, \tau)\) be a topological space. A sub set \(A\) of \(X\) is said to be semi preopen set \([19]\) or \(\beta\)-open if \(A \subseteq \text{Cl}(\text{Int}(A))\) and semi-preclosed set or \(\beta\)-closed \([1]\) if \(\text{Int}(\text{Cl}(A)) \subseteq A\).

Definition 2.5 Let \((X, \tau)\) be a topological space. A subset \(A\) of \(X\) is said to be regular open set \([20]\) if \(A = \text{Int}(\text{Cl}(A))\) and a regular closed set if \(\text{Cl}(\text{Int}(A)) = A\).

Definition 2.6 Let \((X, \tau)\) be a topological space. A sub set of \(A\) is said to be semi regular set \([21]\) if it both semi open and semi closed in \((X, \tau)\).

Definition 2.7 Let \((X, \tau)\) be a topological space. It is called a generalized closed set \([1]\) (briefly \(g\)-closed set) if \(\text{Cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \((X, \tau)\).

Definition 2.8 Let \((X, \tau)\) be a topological space. It is called a semi-generalized closed set \([22]\) (briefly \(gs\)-closed set) if \(s\text{Cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is semi open in \((X, \tau)\).

Definition 2.9 Let \((X, \tau)\) be a topological space. It is called a generalized semiclosed set \([23]\) (briefly \(gs\)-closed set) if \(\text{Cl}(\alpha \text{Cl}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \((X, \tau)\).

Definition 2.10 Let \((X, \tau)\) be a topological space. It is called a \(\alpha\)-generalized closed set \([24]\) (briefly \(\alpha g\)-closed set) if \(\alpha \text{Cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \((X, \tau)\).

Definition 2.11 Let \((X, \tau)\) be a topological space. It is called a generalized \(\alpha\)-closed set \([25]\) (briefly \(g\alpha\)-closed set) if \(\alpha \text{Cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is \(\alpha\)-open in \((X, \tau)\).

Definition 2.12 Let \((X, \tau)\) be a topological space. It is called a semi-pre-closed set \([13]\) (briefly \(gsp\)-closed set) if \(s\text{Cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is open in \((X, \tau)\).

Definition 2.13 Let \((X, \tau)\) be a topological space. It is called semi weakly \(g^*\)-closed set \([26]\) (briefly \(swg^*\)-closed set) if \(g\text{Cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is semi open.

Remark 2.14 The complement of respective closed sets are the corresponding open sets \([26]\) and vice versa.

Definition 2.15 A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be semi-continuous \([17]\) if \(f^{-1}(V)\) is semi-open in \((X, \tau)\) for every open set \(V\) of \((Y, \sigma)\).

Definition 2.16 A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be pre-continuous \([10]\) if \(f^{-1}(V)\) is pre-open in \((X, \tau)\) for every open set \(V\) of \((Y, \sigma)\).

Definition 2.17 A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be \(\alpha\) -continuous \([27]\) if \(f^{-1}(V)\) is open in \((X, \tau)\) for every open set \(V\) of \((Y, \sigma)\).

Definition 2.18 A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be \(\beta\) - continuous \([11]\) if \(f^{-1}(V)\) is semi preopen in \((X, \tau)\) for every open set \(V\) of \((Y, \sigma)\).

Definition 2.19 A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be \(g\) -continuous \([9]\) if \(f^{-1}(V)\) is \(g\)-open in \((X, \tau)\) for every open set \(V\) of \((Y, \sigma)\).

Definition 2.20 A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be \(sg\) -continuous if \(f^{-1}(V)\) is \(sg\)-open in \((X, \tau)\) for every open set \(V\) of \((Y, \sigma)\).

Definition 2.21 A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be \(gs\)-continuous \([12]\) if \(f^{-1}(V)\) is \(gs\)-open in \((X, \tau)\) for every open set \(V\) of \((Y, \sigma)\).

Definition 2.22 A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is said to be \(ga\)- continuous \([25]\) if \(f^{-1}(V)\) is \(ga\)-open in \((X, \tau)\) for every open set \(V\) of \((Y, \sigma)\).
Definition 2.23 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be \(\alpha g \)-continuous \([28]\) if \(f^{-1}(V) \) is \(\alpha g \)-open in \((X, \tau)\) for every open set \(V \) of \((Y, \sigma)\).

Definition 2.24 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be \(g_{sp} \)-continuous \([13]\) if \(f^{-1}(V) \) is \(g_{sp} \)-open in \((X, \tau)\) for every open set \(V \) of \((Y, \sigma)\).

Definition 2.25 A function \(f : X \rightarrow Y \) is said to be \(rwg \)-continuous \([29]\) if the inverse image of every open set in \(Y \) is \(rwg \)-open in \(X \).

Definition 2.26 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called contra continuous \([2]\) if \(f^{-1}(V) \) is closed in \((X, \tau)\) for each open set \(V \) in \((Y, \sigma)\).

Definition 2.27 Let \(X \) and \(Y \) be topological spaces. A map \(f : X \rightarrow Y \) is said to be semi weakly \(g^* \)-continuous (\(swg^* \)-continuous) \([30]\) if the inverse image of every open set in \(Y \) is \(swg^* \)-open in \(X \).

Definition 2.28 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be contra semi -continuous \([3]\) if \(f^{-1}(V) \) is semi-closed in \((X, \tau)\) for every open set \(V \) of \((Y, \sigma)\).

Definition 2.29 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be contra precontinuous \([4]\) if \(f^{-1}(V) \) is preclosed in \((X, \tau)\) for every open set \(V \) of \((Y, \sigma)\).

Definition 2.30 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be contra \(\alpha \) -continuous \([5]\) if \(f^{-1}(V) \) is closed in \((X, \tau)\) for every open set \(V \) of \((Y, \sigma)\).

Definition 2.31 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be contra \(\beta \)- continuous \([31]\) if \(f^{-1}(V) \) is semi preclosed in \((X, \tau)\) for every open set \(V \) of \((Y, \sigma)\).

Definition 2.32 A function \(f : X \rightarrow Y \) is called almost continuous at \(x \in X \) if for every open set \(V \) in \(Y \) containing \(f(x) \), there is an open set \(U \) in \(X \) containing \(x \) such that \(f(V) \subset V^{\circ} \). If \(f \) is almost continuous at every point of \(X \) then it is called almost continuous.

3. Contra Semi Weakly \(g^* \)-Continuous Functions

In this section, we introduce contra semi weakly \(g^* \)-continuous functions and study some of their properties.

Definition 3.1 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called contra semi weakly \(g^* \)-continuous if \(f^{-1}(V) \) is \(swg^* \)-closed in \((X, \tau)\) for each open set \(V \) in \((Y, \sigma)\).

Theorem 3.2 If a function \(f : X \rightarrow Y \) is contra \(swg^* \)-continuous and \(Y \) is regular then \(f \) is \(swg^* \)-continuous.

Proof Let \(X \) be an arbitrary point of \(x \) and let \(V \) be an open set of \(Y \) containing \(f(x) \); since \(Y \) is regular there exist an open set \(W \) in \(Y \) containing \(f(x) \). Such that \(Cl(W) \subseteq V \). Since \(f \) is contra \(swg^* \)-continuous and there exists \(U \in SWG^*O(X, x) \) such that \(f(U) \subseteq Cl(W) \). Then \(f(U) \subseteq Cl(W) \subseteq V \).

Hence \(f \) is \(swg^* \)-continuous.

Theorem 3.3 If a function \(f : X \rightarrow Y \) is contra \(swg^* \)-continuous and \(X \) is \(swg^* \)-space, then \(f \) is contra continuous.

Proof Let \(V \) be a closed set in \(Y \). Since \(f \) is contra \(swg^* \)-continuous, \(f^{-1}(V) \) is \(swg^* \)-open in \(X \). Since \(X \) is \(swg^* \)-space \(f^{-1}(V) \) is open in \(X \). Hence \(f \) is contra continuous.

Corollary 3.1 If \(X \) is a \(swg^* \)-space then for a function \(f : X \rightarrow Y \) the following statements are equivalent:

1. \(f \) is contra continuous.
2. \(f \) is contra \(swg^* \)-continuous.

Proof Obvious.
Definition 3.4 Let \(A \) be a sub set of a space \((X, \tau)\):

1. The set \(\{ \text{F} \subseteq \text{X} \mid \text{A} \subseteq \text{F}, \text{F is swg*-closed} \} \) is called the swg*-closure of \(A \) and is denoted by \(\text{Cl}_{\text{swg}^*}(A) \).
2. The set \(\{ \text{F} \subseteq \text{X} \mid \text{F is swg*-open} \} \) is called swg*-interior of \(A \) and is denoted by \(\text{Int}_{\text{swg}^*}(A) \).

Lemma 3.5 The following properties hold for sub sets \(A, B \) of a space \(X \).

1. \(x \in \text{ker}(A) \), if and only if \(A \cap f \neq \phi \) for any \(f \in C(X, x) \).
2. \(A \subseteq \text{ker}(A) \) and \(A = \text{ker}(A) \) if \(A \) is open in \(X \).
3. If \(A \subseteq B \), then \(\text{ker}(A) \subseteq \text{ker}(B) \).

Theorem 3.6 Let \(A \) be a subset of \((X, \tau)\).

1. If \(A \) is swg*-closed then \(g \text{Cl}(A) - A \) does not contain any non-empty \#gs-closed set.
2. If \(A \) is swg*-closed and \(A \subseteq B \subseteq g \text{Cl}(A) \), then \(B \) is swg*-closed.

Proof (1) Suppose that \(A \) is swg*-closed and let \(F \) be a non-empty \#gs-closed set with \(F \subseteq g \text{Cl}(A) - A \). Then \(A \subseteq X - F \) and so \(g \text{Cl}(A) \subseteq X - F \). Hence \(F \subseteq X - g \text{Cl}(A) \), a contradiction.

(2) Let \(U \) be a \#gs-open set of \((X, \tau)\) such that \(B \subseteq U \). Then \(A \subseteq U \) since \(A \) is swg*-closed \(g \text{Cl}(A) \subseteq U \). Since \(A \) is swg*-closed \(g \text{Cl}(A) \subseteq U \). Now \(g \text{Cl}(B) \subseteq g \text{Cl}(g \text{Cl}(A)) \subseteq U \). Therefore \(B \) is also a swg*-closed set of \((X, \tau)\).

Theorem 3.7 For a function \(f : (X, \tau) \to (Y, \sigma) \) the following conditions are equivalent:

1. \(f \) is contra swg*-continuous;
2. For every closed subset \(F \) of \(Y \), \(f^{-1}(F) \subseteq SWG \ast O(X) \);
3. For each \(x \in X \) and each \(F \in C(Y, f(x)) \), there exists \(U \in SWG \ast O(X, x) \) such that \(f(U) \subseteq F \);
4. \(f(Cl_{\text{swg}^*}(A)) \subseteq \text{ker}(f(A)) \) for every sub set \(A \) of \(X \);
5. \(Cl_{\text{swg}^*}(f^{-1}(B)) \subseteq f^{-1}(\text{ker}(B)) \) for every sub set \(B \) of \(Y \).

Proof The implication (1) \(\Rightarrow\) (2) and (2) \(\Rightarrow\) (3) are obvious.

(3)\(\Rightarrow\)(2): Let \(F \) be any closed set of \(Y \) and \(X \in f^{-1}(F) \). Then \(f(x) \in F \) and there exists \(U_x \in swg \ast O(X, x) \) such that \(f(U_x) \subseteq F \). Therefore we obtain \(f^{-1}(F) = \cup\{U_x : X \in f^{-1}(F)\} \) and \(f^{-1}(F) \) is swg*-open, by Theorem 3.6.

(3)\(\Rightarrow\)(4): Let \(A \) be any subset of \(X \). Suppose that \(Y \notin \text{ker}(f(A)) \). Then by Lemma 3.5, there exists \(F \in C(Y, f(x)) \) such that \(f(A) \cap F = \phi \). Thus we have \(A \cap f^{-1}(F) = \phi \) and since \(f^{-1}(F) \) is swg*-open then we have \(Cl_{\text{swg}^*}(A) \cap f^{-1}(F) = \phi \). Therefore, we obtain \(f(Cl_{\text{swg}^*}(A) \cap F = \phi \) and \(Y \notin f(Cl_{\text{swg}^*}(A)) \). This implies that \(f(Cl_{\text{swg}^*}(A)) \subseteq \text{ker}(f(A)) \).

(4)\(\Rightarrow\)(5): Let \(B \) be any subset of \(Y \) by (4) and Lemma 3.5, we have \(f(Cl_{\text{swg}^*}(f^{-1}(B)) \subseteq \text{ker}(f(f^{-1}(B))) \subseteq \text{ker}B \). Thus \(Cl_{\text{swg}^*}(f^{-1}(B)) \subseteq f^{-1}(\text{ker}(B)) \).

(5)\(\Rightarrow\)(1): Let \(V \) be any open set of \(Y \). Then by Lemma 3.5, we have \(Cl_{\text{swg}^*}(f^{-1}(V)) \subseteq f^{-1}(\text{ker}(V)) = f^{-1}(V) \). Thus shows that \(f^{-1}(V) \) is swg*-closed in \(X \).

Theorem 3.8 Let \(f : X \to Y \) be a function then the following are equivalent:

1. The function \(f \) is swg*-continuous;
2. For each point \(x \in X \) and each open set \(V \) of \(Y \) with \(f(x) \in V \), there exists a swg*-open set \(U \) of \(X \) such that \(x \in U, f(U) \subseteq V \).

Proof (1) \(\Rightarrow\)(2): Let \(f(x) \in V \). Then \(x \in f^{-1}(V) \in SWG \ast O(X) \), since \(f \) is swg*-continuous. Let \(U = f^{-1}(V) \), then \(x \in X \) and \(f(U) \subseteq V \).

(2)\(\Rightarrow\)(1): Let \(V \) be an open set of \(Y \) and let \(x \in f^{-1}(V) \). Then \(f(x) \in V \). Then \(f(x) \in V \) and thus there exists on \(swg^*\)-open set \(U_x \) of \(X \) such that \(x \in U_x \) and \(f(U) \subseteq V \). Now \(x \in U_x \subseteq f^{-1}(V) \) and \(f^{-1}(V) = U_x \). Then \(f^{-1}(V) \) is swg*-open in \(X \). Therefore \(f \) is swg*-continuous.
Definition 3.9 A function $f : X \to Y$ is called almost $swg*$-continuous if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists $U \in SWG \ast O(X,x)$ such that $f(V) \subseteq Int_{swg^*}(Cl(V))$.

Theorem 3.10 A function $f : X \to Y$ is almost $swg*$-continuous if and only if for each $x \in X$ and each regular open set V of Y containing $f(x)$, there exists $U \in SWG \ast O(X,x)$ such that $f(U) \subseteq V$.

Proof Let V be a regular open set of Y containing $f(x)$ for each $x \in X$. This implies that V is an open set of X containing $f(x)$ for each $x \in X$. Since f is almost $swg*$-continuous, there exist $U \in SWG \ast O(X,x)$ such that $f(U) \subseteq V$. Conversely, if for each $x \in X$ and each regular open set V of Y containing $f(x)$, there exists $U \in SWG \ast O(X,x)$ such that $f(U) \subseteq V$. This implies V is an open set of Y containing $f(x)$, there exists $U \in SWG \ast O(X,x)$ such that $f(U) \subseteq V$. Therefore f is almost $swg*$-continuous.

Definition 3.11 A function $f : X \to Y$ is said to be pre $swg*$-open if the image of each $swg*$-open set is $swg*$-open.

Theorem 3.12 If a function $f : X \to Y$ is a pre $swg*$-open and contra $swg*$-continuous then f is almost $swg*$-continuous.

Proof Let x be any arbitrary point of X and V be an open set containing $f(x)$. Since f is contra $swg*$-continuous then by Theorem 3.7 (3), there exists $V \in SWG \ast O(X,x)$, such that $f(V) \subseteq Cl(V)$. Since f is pre $swg*$-open, $f(U)$ is $swg*$-open in Y. Therefore, $f(U) = Int_{swg^*}f(U) \subseteq Int_{swg^*}(Cl(f(U))) \subseteq Int_{swg^*}(Cl(V))$. This shows that f is almost $swg*$-continuous.

Definition 3.13 The $swg*$-frontier of A of a space (X,τ), denoted by $Fr_{swg^*}(A)$ is defined by $Fr_{swg^*}(A) = Cl_{swg^*}(A) \cap Cl_{swg^*}(X - A)$.

Theorem 3.14 If $K = \{x : X, V \cap U \neq \phi, U \subseteq X\}$ for every $swg*$-open set V containing x, then $Cl_{swg^*}(U) = K$.

Proof Let $x \in K \iff V \cap U \neq \phi, x \in V, V$ is a $swg*$-open set, $\iff x \in V$ or every $swg*$-open set containing x contains a point of U other then X, $\iff x \in Cl_{swg^*}(U)$.

Theorem 3.15 The set of all points x of X at which $f : X \to Y$ is not contra $swg*$-continuous is identical with the union of the $swg*$-frontier of the inverse image of closed sets of Y containing $f(x)$.

Proof Suppose f is not contra $swg*$-continuous at $x \in X$. There exists $F \in C(Y,f(x))$, such that $f(U) \cap (Y - F) \neq \phi$ for every $U \in SWG \ast O(X,x)$. This implies that $U \cap f^{-1}(Y - F) \neq \phi$. Therefore we have $x \in Cl_{swg^*}(f^{-1}(Y - F)) = Cl_{swg^*}(X - f^{-1}(F))$. However $x \in Cl_{swg^*}(f^{-1}(F)) \cap Cl_{swg^*}(f^{-1}(Y - F))$. Therefore we obtain $x \in Fr_{swg^*}(f^{-1}(F))$. Suppose that $x \in Fr_{swg^*}(f^{-1}(F))$ for some $F \in C(Y,f(x))$ and f is contra $swg*$-continuous at x, then there exists $U \in SWG \ast O(X,x)$. Such that $f(U) \subseteq F$. Therefore, we have $x \in U \subseteq f^{-1}(F)$ and hence $x \in Int_{swg^*}(f^{-1}(F)) \subseteq X - Fr_{swg^*}(f^{-1}(F))$. This is a contradiction. This means that f is not contra $swg*$-continuous.

Theorem 3.16 Let $\{X_{\lambda} : \lambda \in \Lambda\}$ be any family of topological space. If $f : X \to \pi X_{\lambda}$ is a contra $swg*$-continuous function. Then $P_{X_{\lambda}}f : X \to X_{\lambda}$ is a contra $swg*$-continuous for each $\lambda \in \Lambda$, where P_{λ} is the projection of πX_{λ} onto X_{λ}.

Proof We shall consider a fixed $\lambda \in \Lambda$. Suppose U_{λ} is an arbitrary open set in X_{λ}. Then $P_{X_{\lambda}}^{-1}(U_{\lambda})$ is open in πX_{λ}. Since f is contra $swg*$-continuous, we have by definition $f^{-1}(P_{\lambda}^{-1}(U_{\lambda})) = (P_{X_{\lambda}}f)^{-1}(U_{\lambda})$ is $swg*$-closed in X. Therefore $P_{X_{\lambda}}f$ is contra $swg*$-continuous.

Theorem 3.17 If $f : X \to Y$ be surjective $swg*$-irresolute and pre $swg*$-open and $g : Y \to Z$ be any function. Then $g \circ f : X \to Z$ is contra $swg*$-continuous if and only if g is contra $swg*$-continuous.

Proof The if part is obvious. To prove the only if part, let $g \circ f : X \to Z$ is contra $swg*$-continuous and let F be a closed subset of Z. Then $(g \circ f)^{-1}(F)$ is a $swg*$-open of X. That is $f^{-1}(g^{-1}(F))$ is
an swg-open subset of X, since f is pre swg-open $f(f^{-1}(g^{-1}(F)))$ is swg-open subset of Y. So $g^{-1}(F)$ is an swg-open in Y. Hence g is contra swg-continuous.

For function $f : X \to Y$, the subset $\{(x, f(x))| x \in X\} \subseteq X \times Y$ is called the graph of f and is denoted by $Gr(f)$.

Definition 3.18 The graph $Gr(f)$ of a function $f : X \to Y$ is said to be contra swg-closed if for each $(x, y) \in (X, Y) - Gr(f)$, there exists $U \in SWG \ast O(X, x)$ and $V \in C(Y, y)$ such that $(U \times V) \cap (U \times V) = \phi$, symbolically we say f is $CSwg$-closed in the product space $X \times Y$.

Lemma 3.19 Let $Gr(f)$ be the graph of f, for any subset $A \subseteq X$ and $B \subseteq Y$ we have $f(A) \cap B = \phi$ if and only if $(A \times B) \cap G(f) = \phi$.

Lemma 3.20 The Graph $Gr(f)$ of a function $f : X \to Y$ is $CSwg$-closed in $X \times Y$ if and only if for each $(x, y) \in (X, Y) - Gr(f)$, there exists $U \in SWG \ast O(X, x)$ and $V \in (Y, y)$ such that $f(U) \cap V = \phi$.

Theorem 3.21 If $f : X \to Y$ is contra swg-continuous and Y is Urysohn, then f is $CSwg$-closed in the product space $X \times Y$.

Proof Let $(x, y) \in (X \times Y) - Gr(f)$. Then $y \neq f(x)$ and there exists open sets H_1, H_2 such that $f(x) \in H_1$, $y \in H_2$ and $Cl(H_1) \cap Cl(H_2) = \phi$. From Hypothesis, there exists $V \in SWG \ast O(X, x)$ such that $f(V) \subseteq Cl(H_1)$. Therefore, we obtain $f(V) \cap Cl(H_2) = \phi$. This shows that f is $CSwg$-closed.

Theorem 3.22 If $f : X \to Y$ and $g : X \to Y$ are contra swg-continuous and Y is Urysohn, then $K = \{(x \in X, f(x) = g(x)\}$ is swg-closed in X.

Proof Let $x \in X - K$. Then $f(x) \neq g(x)$ since Y is Urysohn, there exists open sets U and V such that $f(x) \in U$, $g(x) \in V$ and $Cl(U) \cap Cl(V) = \phi$. Since f and g are contra swg-continuous $f^{-1}(Cl(U)) \in SWG \ast O(X)$ and $g^{-1}(Cl(V)) \in SWG \ast O(X)$. Let $A = f^{-1}(Cl(U))$ and $B = g^{-1}(Cl(V))$, then A and B contains X, set $C = A \cap B$, then C is swg-open in X. Hence $f(C) \cap g(C) = \phi$ and $x \notin Cl_{swg}(K)$. Thus K is swg-closed in X.

Theorem 3.23 Let $f : X \to Y$ be a function and let $g : X \to X \times Y$ be the graph function of f, defined by $g(x) = (x, f(x))$ for every $x \in X$. If g is contra swg-continuous, then f is contra swg-continuous.

Proof Let U be an open set in Y then $X \times U$ is an open set in $X \times Y$. Since g is contra swg-continuous, it follows that $f^{-1}(U) = g^{-1}(X \times U)$ is an swg-closed in X. Thus f is contra swg-continuous.

Theorem 3.24 If $f : X \to Y$ is swg-continuous and Y is T_1, there f is $CSwg$-closed in $X \times Y$.

Proof Let $(x, y) \in (X \times Y) - Gr(f)$. Then $f(x) \neq y$ and there exists an open set V of Y such that $f(x) \in V$ and $y \notin V$. Since f is swg-continuous there exists $U \in SWG \ast O(X, x)$. Such that $f(U) \subseteq V$. Therefore, we have $f(U) \cap (Y - V) = \phi$ and $Y - U \in C(Y, y)$. This shows that f is $CSwg$-closed in $X \times Y$.

Definition 3.25

1. A space X is said to be swg-T_1 if for each pair of distinct points x and y in X, there exists swg-open sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

2. A space X is said to be swg-T_2 if for each pair of distinct points x and y in X, there exists swg-open sets U and V containing x and y respectively such that $U \cap V = \phi$.

Theorem 3.26 Let X be a topological and for each pair of distinct points x and y in X, there exists a map f of X into a urysohn topological space Y such that $f(x) \neq f(y)$ and f is contra swg-continuous at x and y, then X is swg-T_2.

Proof Let x and y be any two distinct points in X. Then there exists and urysohn space Y and a function $f : X \to Y$ such that $f(x) \neq f(y)$ and f is contra swg-continuous at x and y. Let $a = f(x)$ and $b = f(y)$. Then $a \neq b$, since Y is urysohn, there exists open sets V and W containing a and b, respectively such that $Cl(Y) \cap Cl(W) = \phi$. Since f is contra swg-continuous at x and y, there exists
swg*-open sets A and B containing a and b, respectively, such that $f(A) \subseteq Cl(V)$ and $f(B) \subseteq Cl(W)$. Then $f(A) \cap f(B) = \phi$. So $A \cap B = \phi$. Hence X is swg*-T$_2$.

Corollary 3.2 Let $f : X \to Y$ be contra swg*-continuous injection. If Y is an urysohn space, then X is swg*-T$_2$.

Definition 3.27 A space X is said to be weakly hausdorff, if each element of X is an intersection of regular closed sets.

Theorem 3.28 If $f : X \to Y$ is a contra swg*-continuous injection and Y is weakly hausdorff, then X is swg*-T$_1$.

Proof Suppose that Y is weakly hausdorff. For any distinct points x_1 and x_2 in X, there exists regular closed sets U and V in Y. such that $f(x_1) \in U$, $f(x_2) \notin U$, $f(x_1) \notin V$ and $f(x_2) \in V$. Since f is contra swg*-continuous $f^{-1}(U)$ and $f^{-1}(V)$ are swg*-open, subsets of X, such that $x_1 \in f^{-1}(U)$, $x_2 \notin f^{-1}(U)$, $x_1 \notin f^{-1}(V)$ and $x_2 \in f^{-1}(V)$. This shown that X is swg*-T$_1$.

Theorem 3.29 Let $f : X \to Y$ have a $CSwg*$-closed graph. If f is injective, then X is swg*-T$_1$.

Proof Let x_1 and x_2 be any two distinct points of X. Then we have $(x_1, f(x_2)) \in (X \times Y) - G(f)$. There exist a swg*-open set U in X. Containing x_1 and $F \subseteq C(Y, f(x_2))$ such that $f(U) \cap F = \phi$. Hence $U \cap f^{-1}(F) = \phi$. Therefore we have $x_2 \notin U$. This implies that x is swg*-T$_1$.

Definition 3.30 A topological space is said to be ultra hausdorff, if for each pair of distinct points x and y in X, there exists clopen sets A and B containing x and y respectively such that $A \cap B = \phi$.

Theorem 3.31 Let $f : X \to Y$ be a contra swg*- continuous injection. If Y is ultra hausdorff space, then X is swg*-T$_2$.

Proof Let x_1 and x_2 be any two distinct points of X, then $f(x_1) \neq f(x_2)$ and there exist clopen sets U and V containing $f(x_1)$ and $f(x_2)$, respectively such that $U \cap V = \phi$. Since f is contra swg*-continuous, then $f^{-1}(U) \in SWG*O(X)$ and $f^{-1}(V) \in SWG*O(X)$ such that $f^{-1}(U) \cap f^{-1}(V) = \phi$. Hence X is swg*-T$_2$.

Remark 3.32 The following examples show that contra swg*-continuous function and contra α-continuous function are independent.

Example 3.33 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{b\}\}$ and $\sigma = \{Y, \phi, \{a, c\}, \{a, c\}\}$. Consider $f : X \to Y$ defined as $f(a) = a$, $f(b) = b = f(c)$. This function f is contra swg*-continuous but not contra α-continuous. Since the pre-image of the open set $\{a\}$ in Y is $\{a\}$ is not α-open in X.

Example 3.34 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{c\}\}$. Consider $f : X \to Y$ defined as $f(a) = b = f(b)$, $f(c) = a$. This function f is contra α-continuous but not contra swgs-continuous. Since for the pre-image of the open set $\{a, b\}$ in Y is $\{a, b\}$ is not swgs-open in X.

Remark 3.35 The following examples show that contra swgs-continuous function and contra semi continuous function are independent.

Example 3.36 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$ and f be the identity map. This f is contra swgs-continuous but not contra semi continuous as the inverse image of this open set $\{b, c\}$ in Y is $\{b, c\}$ in X is not semiopen.

Example 3.37 Let $X = Y = \{a, b, c\}$ with $\tau = \{X, \phi, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a, b\}\}$. Consider $f : X \to Y$ defined as $f(a) = a$, $f(b) = f(c) = c$. This function f is contra semi continuous but not contra swgs-continuous since the pre image of the open set $\{c\}$ in Y is $\{c\}$ is not swgs-open in X.

Remark 3.38 The following examples show that contra swgs-continuous function and contra pre continuous function are independent.
Example 3.39 Let \(X = Y = \{a, b, c\} \) with \(\tau = \{X, \phi, \{a\}, \{a, c\}\} \) and \(\sigma = \{Y, \phi, \{a, b\}\} \). Consider \(f : X \to Y \) defined as \(f(a) = b, f(b) = a, f(c) = c \). The function \(f \) is contra swg*-continuous but not contra precontinuous as inverse image of this open set \(\{c\} \) in \(Y \) is \(\{c\} \) in \(X \) is not preopen.

Example 3.40 Let \(X = Y = \{a, b, c\} \) with \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \) and \(\sigma = \{Y, \phi, \{b, c\}\} \). Consider \(f : X \to Y \) defined as \(f(a) = a, f(b) = a, f(c) = c \). This function \(f \) is contra precontinuous but not contra swg*-continuous as inverse image of this open set \(\{a, c\} \) in \(Y \) is \(\{a, c\} \) in \(X \) is not swg*-open.

Example 3.42 Let \(X = Y = \{a, b, c\} \) with \(\tau = \{X, \phi, \{c\}\} \) and \(\sigma = \{Y, \phi, \{c\}\} \) and \(f \) be the identity map. This function \(f \) is contra swg*-continuous but not contra \(\beta \)-continuous as the inverse image of this open set \(\{a, b\} \) in \(Y \) is \(\{a, b\} \) in \(X \) is not \(\beta \)-open.

Example 3.43 Let \(X = Y = \{a, b, c\} \) with \(\tau = \{X, \phi, \{a, c\}\} \) and \(\sigma = \{Y, \phi, \{c\}\} \). Consider \(f : X \to Y \) defined as \(f(a) = b, f(b) = a, f(c) = c \). This function \(f \) is contra \(\beta \)-continuous but not contra swg*-continuous as the inverse image of this open set \(\{a, b\} \) in \(Y \) is \(\{a, b\} \) in \(X \) is not swg*-open.

Remark 3.41 The following examples show that contra swg*-continuous function and contra \(\beta \)-continuous function are independent.

Remark 3.42 From the above results we get the following diagram:

```
Contra semicontinuous
   /   /
/     /
Contra \( \alpha \)-continuous \( \xrightarrow{\sim} \) Contra swg*-continuous \( \xleftarrow{\sim} \) Contra \( \beta \)-continuous
   /   /
/     /
Contra precontinuous
```

References

REFERENCES

