Characterizations of pre-R_0, pre-R_1 spaces and p^*-closedness of strongly compact(countably p-compact) sets

Navpreet Singh Noorie*, Anakh Singh

*Department of Mathematics, Punjabi University, Patiala-147002, Punjab, India.

Abstract

We introduce p^*-closed sets and obtain new characterizations of pre-R_0 and pre-R_1 spaces. Necessary and sufficient conditions are obtained for the p^*-closeness of a strongly compact (countably p-compact) set in pre-R_1 (pre-sequential, pre-R_1), p-normal (pre-sequential, p-normal) and also in p^*-normal (pre-sequential, p^*-normal) spaces introduced in the paper.

Keywords: p^*-closed, pre-R_0, pre-R_1, strongly compact, countably p-compact, pre-accumulation, p-convergent, pre-sequential, p-normal, strongly p-normal, p^*-normal, net.

2010 MSC: 54D30, 54D10, 54D15, 54D55.

1. Introduction

In [9] N. Levine introduced C-C spaces as spaces in which the closed and compact sets in X coincide. Further in [13] A. Wilansky introduced KC-spaces as spaces in which every compact set is closed, which characterizes the concept of C-C spaces as a compact KC-space.

In [6] M. Ismail and P. Nyikos introduced C-closed spaces in which every countably compact subset is closed and as a corollary obtained the standard result that every Fréchet, T_2-space and more generally every sequential, T_2-space is C-closed. In [10] Á. Császár introduced S_i-spaces and since then S_i-spaces have been widely used in general topology. In particular in [12], G. L. Garg and N. Singh obtained necessary and sufficient conditions for a compact (countably compact) subset to be closed in S_2 (sequential, S_2)-spaces and in normal (sequential, normal) spaces. Further, with the introduction of preclosed sets by A. S. Mashhour [10] and preclosures by S. N. El-Deeb et al. [1], the concept of pre-R_0 and pre-R_1-spaces in terms of preclosures were introduced by M. Caldas et al. in [2] and several characterizations of these spaces were given.

*Email address: navresmath@yahoo.com (Navpreet Singh Noorie)

Received: 5 November 2013 Accepted: 13 December 2013
Throughout, by a space \(X \) we shall mean a topological space. In a space \(X \), \(A^c \) will denote the complement of \(A \) for any subset \(A \) of \(X \). \(R \) and \(Z^+ \) will denote the set of all real numbers and the set of all positive integers, respectively.

A subset \(A \) of a space \(X \) is preclosed [10] if closure of interior of \(A \) is contained in \(A \). The complement of a preclosed set is called a preopen set and preclosure [4] is defined in a manner analogous to closure so that preclosure is the intersection of all preclosed sets containing \(A \) and therefore it is the smallest preclosed set containing \(A \) and is denoted by \(pcl(A) \). A point \(x \in X \) is a pre-accumulation (p-convergent) point [12] of a net in \(X \) if the net is frequently (eventually) in every preopen set containing \(x \). A space \(X \) is:

1. strongly compact [11] (countably p-compact) [14] if every preopen (countable preopen) cover of \(X \) has finite subcover,
2. \(p \)-normal [12] if for each pair of disjoint closed sets of \(X \), there exist disjoint preopen sets containing them (So every normal space is \(p \)-normal),
3. pre-\(R_0 \) [2] if every preopen set contains preclosures of its singletons.
4. pre-\(R_1 \) [2] if for points \(x, y \in X \) with distinct preclosures there exist disjoint preopen sets containing \(pcl(\{x\}) \) and \(pcl(\{y\}) \),
5. pre-\(T_1 \) [8] if for each pair of distinct points \(x \) and \(y \) of \(X \), there exists a pair of preopen sets one containing \(x \) but not \(y \) and the other containing \(y \) but not \(x \).
6. pre-\(T_2 \) [8] if for each pair of distinct points \(x \) and \(y \) of \(X \), there exists a pair of disjoint preopen sets, one containing \(x \) and the other containing \(y \).

In this paper, we introduce a generalization of preclosed sets, namely \(p^* \)-closed sets and study the \(p^* \)-closedness of strongly compact sets. For any set to be \(p^* \)-closed in any space \(X \), it is trivially necessary that the set be a union of \(p^* \)-closed sets, of the form \(G \cup F \), or of the form \(G \cap F \) where \(G \) and \(F \) are arbitrary \(p^* \)-open and \(p^* \)-closed sets in \(X \), respectively. In Section 2, we show that some of these conditions are also sufficient for a strongly compact (countably \(p \)-compact) set to be \(p^* \)-closed in pre-\(R_1 \) (pre-sequential, pre-\(R_1 \)) and in \(p^* \)-normal (pre-sequential, \(p^* \)-normal) spaces. Among other results we obtain new characterizations of pre-\(R_0 \)-spaces and pre-\(R_1 \)-spaces in terms of \(p^* \)-closed sets and we use these to give characterizations of \(p^* \)-closeness of a strongly compact set in a pre-\(R_1 \) (pre-sequential, pre-\(R_1 \)) spaces and in \(p^* \)-normal (pre-sequential, \(p^* \)-normal) spaces. Further, sufficient conditions for the \(p^* \)-closeness of a strongly compact (countably \(p \)-compact) in \(p \)-normal (pre-sequential, \(p \)-normal) and strongly \(p \)-normal (pre-sequential, strongly \(p \)-normal) spaces and for the equality of the union of \(p^* \)-closures and the \(p^* \)-closure of the union of arbitrary families of sets in pre-\(R_1 \) (pre-sequential, pre-\(R_1 \)) spaces and in \(p^* \)-normal (pre-sequential, \(p^* \)-normal) spaces are also obtained. Strong compactness (Countably \(p \)-compactness) of the \(p^* \)-closure of a strongly compact (countably \(p \)-compact) set in pre-\(R_1 \) (pre-sequential, pre-\(R_1 \)) spaces is also obtained.

The following results will be used in the next section.

Lemma 1.1. [4] Let \(X \) be a space and \(A \) is subset of \(X \). Then the following hold:

(i) For a point \(x \) of \(X \), \(x \in pcl(A) \) if and only if \(A \) intersects with every preopen set containing \(x \).
(ii) \(A \) is preclosed in \(X \) if and only if \(A = pcl(A) \).
(iii) \(pcl(pcl(A)) = pcl(A) \) i.e., \(pcl(A) \) is a preclosed set.

Lemma 1.2. [2] For a space \(X \), the following conditions are equivalent:

(i) \(X \) is pre-\(R_0 \),
(ii) For a pair of points \(x \) and \(y \) in \(X \), \(x \) is in preclosure of \(y \) if and only if \(y \) is in preclosure of \(x \),
(iii) \(X \) is pre-\(T_1 \) i.e., every singleton is preclosed.

Remark 1.3. From definition of pre-\(R_0 \) space it is obvious that a space \(X \) is pre-\(R_0 \) if and only if every preopen set is union of preclosures of its singletons and therefore by Lemma [14] it follows that a space \(X \) is pre-\(R_0 \) if and only if every preopen set is a union of preclosed sets.
Lemma 1.4. \cite{2} For a space X, the following conditions are equivalent:

(i) X is pre-R_1,
(ii) X is pre-T_2.

Remark 1.5. (a) \cite{2, Proposition 4.1} A space X is pre-R_1 then it is pre-R_0.

(b) By part (a) and Lemma 1.4 it follows that a space X is pre-R_1 if and only if for every pair of points x, y whenever there is a preopen set containing x but not y, then they have disjoint preopen sets.

The following Lemma is proved in \cite{7} for nets with well ordered directed domains. However, it is easy to see that it holds for all nets.

Lemma 1.6. \cite{7, Theorem 3.2} A space X is strongly compact if and only if every net in X pre-accumulates to some point of X.

Lemma 1.7. \cite{1, Theorem 2.9 (2)} Let X be a space and A is subset of X. If A is preclosed in X, then no net in A p-converges to a point of A^c.

2. Results

We first introduce the following sets.

Definition 2.1. (i) A subset A of space X is said to be p^*-closed if no net in A p-converges to a point of A^c. The complement of a p^*-closed set is said to be p^*-open.

(ii) The intersection of all p^*-closed sets of X containing A is said to be the p^*-closure of A and will be denoted by $p^*cl(A)$.

Remark 2.2. (a) Arbitrary intersection p^*-closed sets is p^*-closed.

(b) Every preclosed set is p^*-closed (Lemma 1.7).

(c) Let X be a space and A be subset of X. Then the following hold:

(i) A is p^*-closed in X if and only if $A = p^*cl(A)$.

(ii) $p^*cl(A)$ is a p^*-closed set.

(iii) $p^*cl(A) \subset pcl(A)$.

Definition 2.3. A space X is said to be pre-sequential if for every non-preclosed subset A of X there is a sequence $\{x_n\}$ in A which p-converges to a point of A^c.

We begin with the following new characterizations of pre-R_0 spaces.

Theorem 2.4. For a space X, the following conditions are equivalent:

(i) for every pair of points x, y of X whenever there is a p^*-open set containing x but not y, then there is also a preopen set containing y but not x,

(ii) for every pair of points x, y of X whenever x is in every preopen set containing y, then y is in every p^*-open set containing x,

(iii) every p^*-open set is union of preclosures of its singletons,

(iv) every p^*-open set is a union of preclosed sets,

(v) X is pre-R_0.

Proof. (i)\Rightarrow (ii): Let x is in every preopen set containing y. To prove, y is in every p^*-open set containing x. Let if possible there exists a p^*-open set U containing x but not containing y. By (i) there exists a preopen V containing y but not x. So there exists a p^*-open set V containing y but not x which is a contradiction and hence the result.
(ii)⇒ (iii): Let \(G \) be a \(p^* \)-open set, let \(y \in pcl\{x\} \) for some \(x \in G \). Then by Lemma 1.1(i), \(x \) is in every \(p^* \)-open set of \(y \). Then by (ii) we have \(y \) is in every \(p^* \)-open set containing \(x \) so \(y \) is in \(G \). As \(x \) was arbitrarily chosen, \(pcl\{x\} \subset G \) for all \(x \in G \) and hence (iii) holds.

(iii)⇒ (iv): The proof is obvious by Lemma 1.1(iii).

(iv) ⇒ (i): Let \(A \) be a \(p^* \)-open set containing \(x \) but not \(y \). By (iv), \(A = \bigcup_{\alpha} F_{\alpha} \), where each \(F_{\alpha} \) is a preclosed set. Then \(x \in F_{\alpha} \) and \(y \in F_{\alpha}^c \) for some \(\alpha \) and so \(F_{\alpha}^c \) is a preopen set containing \(y \) but not \(x \).

(iv) ⇒ (v): It follows from the fact that every preopen set is \(p^* \)-open and Remark 1.3.

(v) ⇒ (iv): This follows from the fact that in a pre-\(R_0 \) space every singleton is preclosed (Lemma 1.2 above).

Theorem 2.5. A space \(X \) is pre-\(R_0 \) if and only if any subset \(A \) of \(X \) is a union of preclosed sets, whenever \(A^c \) is a union of \(p^* \)-closed sets.

Proof. The proof follows from the fact that a space \(X \) is pre-\(R_0 \) if and only if every \(p^* \)-open set is a union of preclosed sets (Theorem 2.4).

We now obtain the following new characterization of pre-\(R_1 \) spaces.

Theorem 2.6. For a space \(X \), the following conditions are equivalent:

(i) \(X \) is pre-\(R_1 \),

(ii) for every pair of points \(x, y \) in \(X \), whenever there is a \(p^* \)-open set containing \(x \) but not \(y \), then they have disjoint preopen set.

Proof. (i) ⇒ (ii): It follows from Lemma 1.4.

(ii) ⇒ (iii): It follows by fact that every preopen is \(p^* \)-open and Remark 1.3(b).

We now obtain the following characterization for the \(p^* \)-closedness of a strongly compact (countably \(p \)-compact) subset in a pre-\(R_1 \) (pre-sequential, pre-\(R_1 \)) space.

Theorem 2.7. For a strongly compact (countably \(p \)-compact) subset \(K \) of a pre-\(R_1 \) (pre-sequential, pre-\(R_1 \)) space \(X \), the following conditions are equivalent:

(i) \(K \) is \(p^* \)-closed,

(ii) either \(K \) or \(K^c \) is a union of \(p^* \)-closed sets,

(iii) both \(K \) and \(K^c \) are unions of \(p^* \)-closed sets.

Proof. For any set \(K \), (i) implies (ii) is obvious and (ii) implies (iii) follows from Theorem 2.5 above since every preclosed set is \(p^* \)-closed.

To prove (iii) implies (i), it is sufficient to assume that \(K = \bigcup_{\alpha} F_{\alpha} \), where each \(F_{\alpha} \) is a \(p^* \)-closed set in \(X \). If \(K \) is not \(p^* \)-closed (hence not preclosed), then there exists a net \(\{x_\lambda\} \) (a sequence \(\{x_n\} \) in \(K \) such that \(x_\lambda \) \(p \)-converges to \(a \) \((x_n \ p \)-converges to \(a \) \) and \(a \in K^c \). Then as \(K \) is strongly compact (countably \(p \)-compact) implies that the net \(\{x_\lambda\} \) (sequence \(\{x_n\} \) has a pre-accumulation point \(b \) in \(K \) (Lemma 1.6). Therefore, there exists an \(\alpha \) such that \(b \in F_{\alpha} \) and \(a \notin F_{\alpha} \). Then \(F_{\alpha}^c \) is a \(p^* \)-open set containing \(a \) not containing \(b \), and since \(X \) is pre-\(R_1 \) it follows that they have disjoint preopen sets (Theorem 2.6), contradicting to the fact that \(\{x_\lambda\} \) \(p \)-converges to \(a \) \((\{x_n\} \ p \)-converges to \(a \) \) and \(b \) is a pre-accumulation point of \(\{x_\lambda\} \) (\(\{x_n\} \)). Hence \(K \) must be \(p^* \)-closed and (i) follows.

Corollary 2.8. Let \(X \) be a pre-\(R_1 \) (pre-sequential, pre-\(R_1 \)) space and \(G \) and \(F \) be arbitrary \(p^* \)-open and \(p^* \)-closed sets in \(X \), respectively. Then:

(a) for a strongly compact (countably \(p \)-compact) subset \(K \) of \(X \), the following conditions are equivalent:
We now obtain the following characterization for the compact (countably p-compact) subset in a A-space the preclosure of any point x is contained in every preopen set of the point and p^*-closed, if it is strongly compact (countably p-compact).

Definition 2.11. A space X is said to be p^*-normal if for each pair of disjoint p^*-closed sets of X, there exist disjoint preopen sets containing them.

Definition 2.12. A space X is said to be strongly p-normal if for each pair of disjoint preclosed sets of X, there exist disjoint preopen sets containing them.

Definition 2.13. A p^*-normal space is strongly p-normal and a strongly p-normal space is p-normal.

Proof. The proof follows from the fact that in a pre-R_0 and therefore, in a pre-R_1 space, every p^*-open set is a union of preclosed sets as every pre-R_1 space is a pre-R_0 space.

Corollary 2.9. Let K be a strongly compact (countably p-compact) subset of a pre-R_1 (pre-sequential, pre-R_1) space X. Then:

(a) $p^*\text{cl}(K) = \bigcup\{p^*\text{cl}\{x\} : x \in K\}$ and $p^*\text{cl}(K)$ is strongly compact (countably p-compact).

(b) if S is any set such that $K \subseteq S \subseteq p^*\text{cl}(K)$, then S is strongly compact (countably p-compact).

Proof. First, we prove that the set $E = \bigcup\{p^*\text{cl}\{x\} : x \in K\} \subseteq p^*\text{cl}(K)$ is strongly compact (countably p-compact). Let G be an arbitrary (countable) family of preopen sets covering E. Then G is a preopen (countable preopen) cover of K and as K is strongly compact (countably p-compact) so there exist finitely many sets G_1, G_2, . . . , G_n in G such that $K \subseteq \bigcup_{i=1}^{n} G_i$. Since in a pre-$R_0$, and therefore, in a pre-R_1 space the preclosure of any point x is contained in every preopen set of the point and p^*-closure of a set is contained in preclosure of the set it follows that $E \subseteq \bigcup_{i=1}^{n} G_i$, implying thereby that E is strongly compact (countably p-compact). Since E is also a union of p^*-closed sets, it follows from Theorem 2.7 above that E is p^*-closed. Hence $p^*\text{cl}(K) = E$ and $p^*\text{cl}(K)$ is strongly compact (countably p-compact). This proves (a). Also, (b) follows from (a).

Corollary 2.10. In a pre-R_1 (pre-sequential, pre-R_1) space X,

(a) a union of p^*-closed sets or an intersection of p^*-open sets is p^*-closed, if it is strongly compact (countably p-compact),

(b) if ε is a family of subsets of X such that $\bigcup\{p^*\text{cl}(E) : E \in \varepsilon\}$, in particular $\bigcup\{E : E \in \varepsilon\}$, is strongly compact (countably p-compact), then $p^*\text{cl}(\bigcup\{E : E \in \varepsilon\}) = \bigcup\{p^*\text{cl}(E) : E \in \varepsilon\}$.

Proof. Proof of (a) is obvious from Theorem 2.7. For the proof of part (b), we note that in view of Corollary 2.9(b), the condition “$\bigcup\{p^*\text{cl}(E) : E \in \varepsilon\}$ is strongly compact (countably p-compact)” is weaker than the condition “$\bigcup\{E : E \in \varepsilon\}$ is strongly compact (countably p-compact)”.

So far we have discussed p^*-closedness of a strongly compact (countably p-compact) set in pre-R_1 (pre-sequential, pre-R_1) spaces. Since in [5] closeness of compact sets has been studied in normal (sequential, normal) spaces it is relevant to study p^*-closedness of strongly compact (countably p-compact) set in p-normal (pre-sequential, p-normal) spaces introduced in [2] and in the following spaces introduced below.

Definition 2.11. A space X is said to be p^*-normal if for each pair of disjoint p^*-closed sets of X, there exist disjoint preopen sets containing them.

Definition 2.12. A space X is said to be strongly p-normal if for each pair of disjoint preclosed sets of X, there exist disjoint preopen sets containing them.

Definition 2.13. A p^*-normal space is strongly p-normal and a strongly p-normal space is p-normal.

In Section 3, we will give examples to show that converse of the above implications do not hold. We now obtain the following characterization for the p^*-closedness of a strongly compact (countably p-compact) subset in a p^*-normal (pre-sequential, p^*-normal) space.
Theorem 2.14. In a p^*-normal (pre-sequential, p^*-normal) space X, strongly compact (countably p-compact) set K is p^*-closed if and only if K is a union of p^*-closed sets and K^c is of the form $G \cup F$, where G and F are arbitrary preopen and p^*-closed sets, respectively.

Proof. Since necessity is obvious for any set K, we need only prove the sufficiency part. Let $K = \bigcup \alpha F_\alpha$, where each F_α is a p^*-closed set in X and $K^c = G \cup F$, where G is preopen and F is p^*-closed in X. If K is not p^*-closed (hence not preclosed), then there exists a net $\{x_\lambda\}$ (a sequence $\{x_n\}$) in K such that x_λ p-converges to a (x_n p-converges to a) and $a \in K^c$. Since $a \in \text{pcl}(K)$, a cannot belong to G. Therefore, $a \in F$. Then as K is strongly compact (countably p-compact) implies that the net $\{x_\lambda\}$ (sequence $\{x_n\}$) has a pre-accumulation point b in K (Lemma 1.6). Therefore, there exists an such that $b \in F\alpha$ and $a \notin F_\alpha$. Thus a and b belong to the disjoint p^*-closed sets F and F_α, respectively and can be separated by disjoint preopen sets, since X is p^*-normal. This contradicts to the fact that x_λ p-converges to a (x_n p-converges to a) and b is a pre-accumulation point of $\{x_\lambda\}$ ($\{x_n\}$). Hence K must be p^*-closed.

Corollary 2.15. Let X be a p^*-normal (pre-sequential, p^*-normal) space and G and F are arbitrary p^*-open and preclosed sets respectively. Then:

(a) a union of p^*-closed sets in X is p^*-closed, if it is strongly compact (countably p-compact) and is of the form $G \cap F$,

(b) if ε is a family of subsets of X such that $\bigcup \{p^*\text{cl}(E) : E \in \varepsilon\}$ is strongly compact (countably p-compact) and is of the form $G \cap F$, then $p^*\text{cl}(\bigcup \{E : E \in \varepsilon\}) = \bigcup \{p^*\text{cl}(E) : E \in \varepsilon\}$.

The proofs of the following Theorems 2.16 and 2.17 are similar to the proof of Theorem 2.14.

Theorem 2.16. In a p-normal (pre-sequential, p-normal) space X, strongly compact (countably p-compact) set K is p^*-closed if K is a union of closed sets and K^c is of the form $C \cup D$, where C and D are arbitrary preopen and closed sets, respectively.

Theorem 2.17. In a strongly p-normal (pre-sequential, strongly p-normal) space X, strongly compact (countably p-compact) set K is p^*-closed if K is a union of preclosed sets and K^c is of the form $C \cup D$, where C and D are arbitrary preopen and preclosed sets, respectively.

3. Examples

Example 3.1. [16] 5.1 Problem 114] Let $X = Z^+$, together with the topology, $T = \{G \subset X|G = \emptyset$ or $G^c \cap 2Z^+$ is finite, where $2Z^+$ denotes the set of all even positive integers$\}$. Here $K = 2Z^+$ is a p^*-closed set which is not preclosed. Then (X, T) is a strongly p-normal but not p^*-normal as $2Z^+$ and $2Z^+ - 1$ are disjoint p^*-closed sets which do not have disjoint preopen sets containing them and it is not normal as singletons $\{1\}$ and $\{2\}$ are disjoint closed sets which have no disjoint open sets containing them, respectively.

Example 3.2. [13] Example 57] Let $X = \{x \in Z^+|x \geq 2\}$, together with the topology generated by the sets of the form $U_n = \{x \in Z^+|x$ divides $n\}$, for $n \geq 2$. Then X is a normal space and hence p-normal. But it is not strongly p-normal as singletons $\{4\}$ and $\{6\}$ are disjoint preclosed sets which have no disjoint preopen sets containing them, respectively.

Example 3.3 shows that p^*-closeness of K cannot be replaced by preclosedness of K in Theorem 2.7.

Example 3.3. Let $X = \{a, b, c\}$ with topology $T = \{\emptyset, \{a, b\}, X\}$. Then (X, T) is a pre-R_1 space. Further, $K = \{a, b\}$ is a strongly compact set such that both K and K^c are union of preclosed sets but K is not preclosed.
Example 3.4 below shows that converse of Theorem 2.16 does not hold.

Example 3.4. (this is a special case of [16, 8.1 Problem 1]) Let \(p \notin R \) and \(X = R \cup p \), with the topology \(T = \{ G \subset X | G \text{ is open in } R \text{ with the usual topology or } G = X \} \). Then \((X, T) \) is \(p \)-normal space and the singleton set \(K = \{ x \} \) for some \(x \in R \) is a \(p^* \)-closed set and \(K^c \) is of the form \(C \cup D \) where \(C \) is preopen and \(D \) is closed, but \(K \) is not union of closed sets.

Example 3.5 shows that \(p^* \)-closeness of \(K \) cannot be replaced by preclosedness of \(K \) in Theorem 2.17.

Example 3.5. Let \(X = \{ a, b, c, d \} \) with topology \(T = \{ \emptyset, \{ c \}, \{ a, b \}, \{ a, b, c \}, X \} \). Then \(K = \{ a, b \} \) is a \(p^* \)-closed set which is not preclosed. Also, \((X, T) \) is a strongly \(p \)-normal space which is not \(p^* \)-normal as \(\{ a, b \} \) and \(\{ a, c, d \} \) are disjoint \(p^* \)-closed sets which have no disjoint preopen sets containing them. Further, \(K = \{ a, b \} \) is a strongly compact set which is a union of \(p^* \)-closed sets and \(K^c \) is of the form \(C \cup D \), where \(C \) and \(D \) are arbitrary preopen and preclosed sets respectively but \(K \) is not preclosed.

References

[15] A. Wilansky, Between \(T_0 \) and \(T_2 \), Amer. Math. Monthly 74 (1967), 261–266.