On Contra-γ-continuous and Almost Contra-γ-continuous Multifunction

Hariwan Z. Ibrahim
Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq.

ABSTRACT. The main goal of this paper is to introduce and study the notions of contra-γ-continuous and almost contra-γ-continuous multifunctions.

KEYWORDS. Contra-continuous; Contra-γ-continuous; Almost Contra-γ-continuous.

1. Introduction

In 1993, Noiri and Popa [1] introduced the notion of weakly precontinuous multifunctions. Recently, Ekici, Jafari and Noiri [2] introduced the notion of contra-continuous multifunctions. In this paper, we introduce and study two new concepts namely contra-γ-continuous and almost contra-γ-continuous multifunctions.

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y) denotes a topological spaces on which no separation axioms is assumed unless explicitly stated. For a subset K of a space X, $Cl(K)$ and $Int(K)$ represent the closure of K and the interior of A, respectively.

Definition 1.1. A subset U of a space X is called:
(1) α-open [3] if $U \subset Int(Cl(Int(U)))$.
(2) semi-open [4] if $U \subset Cl(Int(U))$.
(3) preopen [5] if $U \subset Int(Cl(U))$.
(4) β-open [6] if $U \subset Cl(Int(Cl(U)))$.
(5) regular open [7] (regular closed [7]) if $U = Int(Cl(U))$ ($U = Cl(Int(U))$).

Definition 1.2. [8] Let (X, τ) be a topological space. An operation γ on the topology τ is a mapping from τ in to power set $P(X)$ of X such that $V \subset \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V.

Definition 1.3. [9] A subset A of a topological spac (X, τ) is called γ-open set if for each $x \in A$ there exists an open set U such that $x \in U$ and $\gamma(U) \subset A$. Then, τ_γ denotes the set of all γ-open set in X. Clearly $\tau_\gamma \subset \tau$. Complements of γ-open sets are called γ-closed.

Definition 1.4. [9] The intersection of all γ-closed sets containing A is called the γ-closure of A and is denoted by $\gamma(Cl(A))$.

Definition 1.5. [10] The τ_γ-interior of A is denoted by $\tau_\gamma-Int(A)$ and defined to be the union of all γ-open sets of X contained in A.

The family of all semi-open (resp. regular closed, regular open, preopen, β-open) sets of X is denoted by $SO(X)$ (resp. $RC(X)$, $RO(X)$, $PO(X)$, $BO(X)$). The union of all preopen sets of X contained
in U is called the preinterior of U and is denoted by $pInt(U)$. The intersection of all α-closed (resp. semi-closed, preclosed, β-closed) sets of X containing U is called the α-closure (resp. semi-closure, preclosure, β-closure) of U and is denoted by $\alpha Cl(U)$ (resp. $sCl(U)$, $pCl(U)$ and $\beta Cl(U)$).

A point $x \in X$ is called a δ-cluster point of a subset A if $Int(Cl(U)) \cap A \neq \phi$ for every open set U containing x. The set of all δ-cluster points of A is called the δ-closure of A and is denoted by $Cl_\delta(A)$. If $A = Cl_\delta(A)$, then A is said to be δ-closed [11]. The complement of a δ-closed set is said to be δ-open. It is shown in [11] that $Cl_\delta(S)$ is closed for each subset S of X. A point $x \in X$ is in θ-semi-closure of A, denoted by $\theta-sCl(A)$, if $A \cap Cl(U) \neq \phi$ for each semi-open set U containing x. A is θ-semi-closed if $A = \theta-sCl(A)$. The complement of a θ-semi-closed set is said to be θ-semi-open [12].

Throughout the paper $F : X \rightarrow Y$ presents a multifunction. For a multifunction $F : X \rightarrow Y$, we shall denote the upper and lower inverse of a subset U of Y by $F^+(U)$ and $F^-(U)$, respectively for which $F^+(U) = \{x \in X : F(x) \subset U\}$ and $F^-(U) = \{x \in X : F(x) \cap U \neq \phi\}$ [13]. The graph multifunction $G_F : X \rightarrow X \times Y$ of a multifunction $F : X \rightarrow Y$ is defined as follows $G_F(x) = \{x\} \times F(x)$ for every $x \in X$.

Lemma 1.6. [1] Let X and Y be topological spaces and let $A \subset X$ and $B \subset Y$. The following properties hold for a multifunction $F : X \rightarrow Y$:

1. $G^+_F(A \times B) = A \cap F^+(B)$.
2. $G^-_F(A \times B) = A \cap F^-(B)$.

Definition 1.7. A multifunction $F : X \rightarrow Y$ is called lower (upper) contra-continuous [2] (resp. lower (upper) contra-precontinuous [14]) if for each $x \in X$ and each closed set K such that $x \in F^-(K)$ ($x \in F^+(K)$), there exists an open (resp. preopen) set U containing x such that $U \subset F^-(K)$ ($U \subset F^+(K)$).

Definition 1.8. [1] A multifunction $F : X \rightarrow Y$ is called lower (upper) weakly precontinuous if for each $x \in X$ and each open set U of Y such that $x \in F^-(U)$ ($x \in F^+(U)$), there exists a preopen set V of X containing x such that $V \subset F^-(Cl(U))$ ($V \subset F^+(Cl(U))$).

2. Contra-γ-continuity and almost contra-γ-continuity

Definition 2.1. A multifunction $F : X \rightarrow Y$ is called:

1. lower contra-γ-continuous at $x \in X$ if for each closed set V with $x \in F^-(V)$, there exists a γ-open set U containing x such that $U \subset F^-(V)$.
2. upper contra-γ-continuous at $x \in X$ if for each closed set V with $x \in F^+(V)$, there exists a γ-open set U containing x such that $U \subset F^+(V)$.
3. lower (upper) contra-γ-continuous if F has this property at each point of X.

Definition 2.2. A multifunction $F : X \rightarrow Y$ is called:

1. lower almost contra-γ-continuous at $x \in X$ if for each regular closed set V with $x \in F^-(V)$, there exists a γ-open set U containing x such that $U \subset F^-(V)$.
2. upper almost contra-γ-continuous at $x \in X$ if for each regular closed set V with $x \in F^+(V)$, there exists a γ-open set U containing x such that $U \subset F^+(V)$.
3. lower (upper) almost contra-γ-continuous if F has this property at each point of X.

Theorem 2.3. If $F : X \rightarrow Y$ is an upper (lower) almost contra-γ-continuous multifunction, then F is upper (lower) weakly precontinuous.

Proof. Let $x \in X$ and V be an open subset of Y with $F(x) \subset V$. This implies that $Cl(V)$ is a regular closed set with $F(x) \subset Cl(V)$. Since F is upper almost contra-γ-continuous, then there exists a γ-open set U containing x such that $U \subset F^+(Cl(V))$. Hence, F is upper weakly precontinuous.
The converse of this implication is not reversible as shown in the following example.

Example 2.4. Let \(X = \{a, b, c, d\} \) and \(\tau = \{\varnothing, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\} \). Define a multifunction \(F : (X, \tau) \rightarrow (X, \tau) \) by \(F(a) = \{b\}, F(b) = \{b\}, F(c) = \{a\}, F(d) = \{d\} \) and \(\gamma(A) = A \) for all \(A \in \tau \). Then \(F \) is upper weakly precontinuous but it is not upper almost contra-\(\gamma \)-continuous.

Remark 2.5. The following diagram hold for a multifunction \(F : X \rightarrow Y \):

\[
\begin{array}{c}
\text{upper/lower weakly precontinuous} \\
\uparrow \\
\text{upper/lower almost contra-\(\gamma \)-continuous} \\
\uparrow \\
\text{upper/lower contra-\(\gamma \)-continuous} \\
\downarrow \\
\text{upper/lower contra-continuous} \\
\downarrow \\
\text{upper/lower contra-precontinuous}
\end{array}
\]

The converses of these implications are not true in general as shown in the following examples and Example 2.4.

Example 2.6. Let \(X = \{a, b, c, d\} \) and \(\tau = \{\varnothing, X, \{a\}, \{a, b\}, \{a, c\}, \{a, c, d\}\} \). Define a multifunction \(F : (X, \tau) \rightarrow (X, \tau) \) by \(F(a) = \{d\}, F(b) = \{c\}, F(c) = \{a\}, F(d) = \{b\} \) and \(\gamma(A) = A \) for all \(A \in \tau \). Then \(F \) is upper contra-precontinuous but it is not upper contra-\(\gamma \)-continuous.

Theorem 2.7. Let \(F : X \rightarrow Y \) be a multifunction. The following are equivalent:

1. \(F \) is upper contra-\(\gamma \)-continuous.
2. \(F^+(V) \) is a \(\gamma \)-open set for any closed subset \(V \) of \(Y \).
3. \(F^-(V) \) is a \(\gamma \)-closed set for any open subset \(V \) of \(Y \).
4. For each \(x \in X \) and each closed set \(K \) containing \(F(x) \), there exists a \(\gamma \)-open set \(U \) containing \(x \) such that if \(y \in U \), then \(F(y) \subset K \).

Proof. (1) \(\Leftrightarrow \) (2): Let \(V \) be a closed subset in \(Y \) and \(x \in F^+(V) \). Since \(F \) is upper contra-\(\gamma \)-continuous, then there exists a \(\gamma \)-open set \(U \) containing \(x \) such that \(U \subset F^+(V) \). Hence, \(F^+(V) \) is \(\gamma \)-open. The converse is similar.

(2) \(\Leftrightarrow \) (3): It follows from the fact that \(F^+(Y \setminus V) = X \setminus F^-(V) \) for every subset \(V \) of \(Y \).

(1) \(\Leftrightarrow \) (4): Obvious.

Theorem 2.8. Let \(F : X \rightarrow Y \) be a multifunction. The following are equivalent:

1. \(F \) is lower contra-\(\gamma \)-continuous.
2. \(F^-(K) \) is a \(\gamma \)-open set for any closed subset \(K \) of \(Y \).
3. \(F^+(V) \) is a \(\gamma \)-closed set for any open subset \(V \) of \(Y \).
4. For each \(x \in X \) and each closed set \(K \) such that \(F(x) \cap K \neq \varnothing \), there exists a \(\gamma \)-open set \(U \) containing \(x \) such that if \(y \in U \), then \(F(y) \cap K \neq \varnothing \).

Proof. The proof is similar to that of Theorem 2.7.

Theorem 2.9. Let \(F : X \rightarrow Y \) be a multifunction. The following are equivalent:

1. \(F \) is upper almost contra-\(\gamma \)-continuous.
2. \(F^+(A) \) is \(\gamma \)-open for any regular closed subset \(A \) of \(Y \).
3. \(F^-(U) \) is \(\gamma \)-closed for any regular open subset \(U \) of \(Y \).

\(\square \)
(4) $F^-(Int(Cl(A)))$ is γ-closed for every open subset A of Y.
(5) $F^+(Cl(Int(A)))$ is γ-open for every closed subset A of Y.

(6) for each $x \in X$ and for each $V \in SO(Y)$ with $F(x) \subset V$, there exists a γ-open subset U of X containing x such that $F(U) \subset Cl(V)$.

(7) $F^+(V) \subset \tau_{\gamma}Int(F^+(Cl(V)))$ for every $V \in SO(Y)$.

Proof. (1) \Rightarrow (2): Let $A \in RC(Y)$ and $x \in F^+(A)$. Since F is upper almost contra-γ-continuous, then there exists a γ-open subset U containing x such that $U \subset F^+(A)$. Thus, $F^+(A)$ is γ-open.

(2) \Leftrightarrow (1): Obvious.

(2) \Leftrightarrow (3) and (4) \Leftrightarrow (5): It follows from the fact that $F^+(Y \setminus A) = X \setminus F^-(A)$ for every subset A of Y.

(3) \Leftrightarrow (4): Let A be an open subset of Y. Since $Int(Cl(A))$ is regular open, then $F^-(Int(Cl(A)))$ is γ-closed. The converse is obvious.

(5) \Leftrightarrow (2): It is similar to that of (3) \Leftrightarrow (4).

(6) \Rightarrow (7): Let $V \in SO(Y)$ and $x \in F^+(V)$. Then $F(x) \subset V$. By (6), there exists a γ-open set U in X containing x such that $F(U) \subset Cl(V)$. This implies that $x \in U \subset F^+(Cl(V))$. Hence, $x \in \tau_{\gamma}Int(F^+(Cl(V)))$ and $F^+(V) \subset \tau_{\gamma}Int(F^+(Cl(V)))$.

(7) \Rightarrow (2): Let $A \in RC(Y)$. Since $A \in SO(Y)$, then $F^+(A) \subset \tau_{\gamma}Int(F^+(A))$. Hence, $F^+(A)$ is γ-open in X.

(2) \Rightarrow (6): Let $x \in X$ and $V \in SO(Y)$ with $F(x) \in V$. Since $Cl(V) \in RC(Y)$, then there exists a γ-open set A in X containing x such that $x \in A \subset F^+(Cl(V))$. Hence, $F(A) \subset Cl(V)$.

Theorem 2.10. Let $F : X \to Y$ be a multifunction. The following are equivalent:

(1) F is lower almost contra-γ-continuous.
(2) $F^-(A)$ is γ-open for any regular closed subset A of Y.
(3) $F^+(U)$ is γ-closed for any regular open subset U of Y.
(4) $F^+(Int(Cl(A)))$ is γ-closed for every open subset A of Y.
(5) $F^-(Cl(Int(A)))$ is γ-open for every closed subset A of Y.
(6) for each $x \in X$ and for each $V \in SO(Y)$ with $F(x) \cap V \neq \emptyset$, there exists a γ-open subset U of X containing x such that $F(u) \cap Cl(V) \neq \emptyset$ for each $u \in U$.
(7) $F^-(V) \subset \tau_{\gamma}Int(F^-(Cl(V)))$ for every $V \in SO(Y)$.

Proof. It is similar to that of Theorem 2.9.

Recall that a topological space (X, τ) is said to be semi-regular if for each open set U of X and for each point $x \in U$, there exists a regular open set V such that $x \in V \subset U$.

Theorem 2.11. For a multifunction $F : (X, \tau) \to (Y, \sigma)$, where (Y, σ) is semi-regular, the following are equivalent:

(1) F is upper contra-γ-continuous (u.c.γ-c.).
(2) $F^+(Cl\delta(B))$ is γ-open for every subset B of Y.
(3) $F^+(K)$ is γ-open for every δ-closed set K of Y.
(4) $F^-(V)$ is γ-closed for every δ-open set V of Y.

Proof. (1) \Rightarrow (2): Let B be any subset of Y. Then $Cl\delta(B)$ is closed and by Theorem 2.7, $F^+(Cl\delta(B))$ is γ-open.

(2) \Rightarrow (3): Let K be a δ-closed set of Y. Then $Cl\delta(K) = K$. By (2), $F^+(K)$ is γ-open.
Theorem 2.15. For a multifunction $\tau: Y \to \mathcal{P}$, if τ is semi-regular, then the following are equivalent:

(1) F is lower contra-γ-continuous (l.c.γ.c.).
(2) $F^-(\text{Cl}(B))$ is γ-open for every subset B of Y.
(3) $F^-(K)$ is γ-open for every δ-closed set K of Y.
(4) $F^+(V)$ is γ-closed for every δ-open set V of Y.

Proof. The proof is similar to the proof of Theorem 2.11.

\begin{proof}

\end{proof}

Definition 2.13. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be contra-γ-continuous if $f^{-1}(V)$ is γ-closed in X for each open set V of Y.

Corollary 2.14. For a function $f: (X, \tau) \to (Y, \sigma)$, where (Y, σ) is semi-regular, the following properties are equivalent:

(1) f is contra-γ-continuous.
(2) $f^{-1}(\text{Cl}(B))$ is γ-open for every subset B of Y.
(3) $f^{-1}(K)$ is γ-open for every δ-closed set K of Y.
(4) $f^{-1}(V)$ is γ-closed for every δ-open set V of Y.

Theorem 2.15. For a multifunction $F: (X, \tau) \to (Y, \sigma)$, the following are equivalent:

(1) F is lower almost contra-γ-continuous (l.a.γ.c.).
(2) $F^-(V)$ is γ-open for every θ-semi-open set V of Y.
(3) $F^+(K)$ is γ-closed for every θ-semi-closed set K of Y.
(4) $\tau^{-}\text{Cl}(F^+(\text{Int}(\text{Cl}(B)))) \subset F^+(\text{sCl}(B))$ for every subset B of Y.
(5) $\tau^{-}\text{Cl}(F^+(B)) \subset F^+(\theta-\text{sCl}(B))$ for every subset B of Y.
(6) $F(\tau^{-}\text{Cl}(A)) \subset \theta-\text{sCl}(F(A))$ for every subset A of X.

Proof. (1) \Rightarrow (2): Let G be any θ-semi-open set of Y. There exists a family of regular closed sets $\{K_\alpha: \alpha \in \Lambda\}$ such that $G = \bigcup\{K_\alpha: \alpha \in \Lambda\}$. It follows from Theorem 2.10 (2), that $F^-(G) = \bigcup\{F^-(K_\alpha): \alpha \in \Lambda\}$ is γ-open.

(2) \Rightarrow (3): Obvious.

(3) \Rightarrow (4): Let B be any subset of Y. Then $\text{Int}(\text{Cl}(B))$ is regular open and it is θ-semi-closed in Y. Therefore we have that $F^+(\text{Int}(\text{Cl}(B)))$ is γ-closed and $\tau^{-}\text{Cl}(F^+(\text{Int}(\text{Cl}(B)))) = F^+(\text{Int}(\text{Cl}(B))) \subset F^+(\text{sCl}(B))$.

(4) \Rightarrow (5): Let B be any subset of Y. For any regular open set V with $B \subset V$, we have $\tau^{-}\text{Cl}(F^+(B)) \subset \text{Cl}(F^+(V)) = \tau^{-}\text{Cl}(\text{Cl}(F^+(V))) \subset F^+(\text{sCl}(V)) = F^+(V)$. Therefore, $\tau^{-}\text{Cl}(F^+(B)) \subset F^+(\text{Int}(\text{Cl}(V)))$. Hence, $F^-(V) \subset F^-(\text{Cl}(V)) \subset F^-(\text{Cl}(V)) \subset F^-(\text{Cl}(V))$. By Theorem 2.10 (7), F is lower almost contra-γ-continuous.

(5) \Rightarrow (6): Let A be a subset of X and $B = F(A)$. Then $A \subset F^+(B)$ and $\tau^{-}\text{Cl}(A) \subset \tau^{-}\text{Cl}(F^+(B)) \subset F^+(\theta-\text{sCl}(B))$. Therefore, we have $F(\tau^{-}\text{Cl}(A)) \subset F(F^+(\theta-\text{sCl}(B))) \subset \theta-\text{sCl}(B) = \theta-\text{sCl}(F(A))$.

□
(6) ⇒ (5): Let \(B \) be any subset of \(Y \). Then we have \(F(\tau_\gamma Cl(F^+(B))) \subseteq \theta Cl(F(F^+(B))) \subseteq \theta Cl(B) \) and hence \(\tau_\gamma Cl(F^+(B)) \subseteq F^+(\theta - s Cl(B)) \).

Theorem 2.16. The following are equivalent for a multifunction \(F : (X, \tau) \to (Y, \sigma) \):

1. \(F \) is upper almost contra-\(\gamma \)-continuous (u.a.c.\(\gamma \)-c).
2. \(\tau_\gamma Cl(F^+(Int(K))) \subseteq F^+(K) \) for every semi-closed set \(K \) of \(Y \).
3. \(\tau_\gamma Cl(F^+(Int(s Cl(B)))) \subseteq F^+(s Cl(B)) \) for every subset \(B \) of \(Y \).
4. \(F^+(s Cl(B)) \subseteq \tau_\gamma - Int(F(Cl(s Cl(B)))) \) for every subset \(B \) of \(Y \).

Proof. (1) ⇒ (2): Let \(K \) be a semi-closed set of \(Y \). Then \(Y \setminus K \) is semi-open. By Theorem 2.9 (7), it follows that \(F^+(Y \setminus K) \subseteq \tau_\gamma - Int(F^+(Y \setminus Int(K))) \). Hence \(X \setminus F^-(K) \subseteq \tau_\gamma - Int(F^+(Y \setminus Int(K))) = \tau_\gamma - Int(X \setminus F^-(Int(K))) = X \setminus \tau_\gamma Cl(F^-(Int(K))) \). Hence, \(\tau_\gamma Cl(F^-(Int(K))) \subseteq F^-(K) \).

(2) ⇒ (3): Let \(B \) be any subset of \(Y \). Then \(s Cl(B) \) is semi-closed in \(Y \) and hence \(\tau_\gamma Cl(F^-(Int(s Cl(B)))) \subseteq F^-(s Cl(B)) \).

(3) ⇒ (4): Let \(B \) be any subset of \(Y \). Then we have \(X \setminus F^+(s Cl(B)) = F^-(s Cl(Y \setminus B)) \subseteq \tau_\gamma Cl(F^-(Int(s Cl(Y \setminus B)))) = \tau_\gamma Cl(F^-(Int(Y \setminus s Cl(B)))) = \tau_\gamma Cl(F^-(Y \setminus Cl(s Cl(B)))) = \tau_\gamma Cl(X \setminus F^+(Cl(s Cl(B)))) = X \setminus \tau_\gamma - Int(F^+(Cl(s Cl(B)))) \). Hence, \(F^+(s Cl(B)) \subseteq \tau_\gamma - Int(F^+(Cl(s Cl(B)))) \).

(4) ⇒ (1): Let \(V \) be any semi-open set of \(Y \). Then \(V = s Cl(V) \) and hence \(F^+(V) \subseteq \tau_\gamma - Int(F^+(Cl(V))) \). By Theorem 2.9 (7), \(F \) is upper almost contra-\(\gamma \)-continuous.

Theorem 2.17. The following are equivalent for a multifunction \(F : (X, \tau) \to (Y, \sigma) \):

1. \(F \) is lower almost contra-\(\gamma \)-continuous.
2. \(\tau_\gamma Cl(F^+(Int(K))) \subseteq F^+(K) \) for every semi-closed set \(K \) of \(Y \).
3. \(\tau_\gamma Cl(F^+(Int(s Cl(B)))) \subseteq F^+(s Cl(B)) \) for every subset \(B \) of \(Y \).
4. \(F^-(s Cl(B)) \subseteq \tau_\gamma - Int(F^-(Cl(s Cl(B)))) \) for every subset \(B \) of \(Y \).

Proof. The proof is similar to the proof of Theorem 2.16.

Definition 2.18. A function \(f : (X, \tau) \to (Y, \sigma) \) is said to be almost contra-\(\gamma \)-continuous if \(f^{-1}(V) \) is \(\gamma \)-closed for each regular open set \(V \) in \(Y \).

Remark 2.19. By Theorems 2.15-2.17 we obtain new characterizations for almost contra-\(\gamma \)-continuous functions. For example:

Corollary 2.20. The following are equivalent for a function \(f : (X, \tau) \to (Y, \sigma) \):

1. \(f \) is almost contra-\(\gamma \)-continuous.
2. \(f^{-1}(V) \) is \(\gamma \)-open for every \(\theta \)-semi-open set \(V \) of \(Y \).
3. \(f^{-1}(K) \) is \(\gamma \)-closed for every \(\theta \)-semi-closed set \(K \) of \(Y \).
4. \(\tau_\gamma Cl(f^{-1}(Int(Cl(B)))) \subseteq f^{-1}(s Cl(B)) \) for every subset \(B \) of \(Y \).
5. \(\tau_\gamma Cl(f^{-1}(B)) \subseteq f^{-1}(\theta - s Cl(B)) \) for every subset \(B \) of \(Y \).
6. \(f(\tau_\gamma Cl(A)) \subseteq \theta Cl(f(A)) \) for every subset \(A \) of \(X \).
7. \(\tau_\gamma Cl(f^{-1}(Int(K))) \subseteq f^{-1}(K) \) for every semi-closed set \(K \) of \(Y \).
8. \(\tau_\gamma Cl(f^{-1}(Int(s Cl(B)))) \subseteq f^{-1}(s Cl(B)) \) for every subset \(B \) of \(Y \).
9. \(f^{-1}(s Cl(B)) \subseteq \tau_\gamma - Int(f^{-1}(Cl(s Cl(B)))) \) for every subset \(B \) of \(Y \).

Theorem 2.21. Let \(F : X \to Y \) be a multifunction. The following are equivalent:

1. \(F \) is upper (lower) almost contra-\(\gamma \)-continuous.
2. \(F^+(Cl(A))(F^-{f Cl(A)}) \) is \(\gamma \)-open in \(X \) for every \(A \in \beta O(Y) \).
3. \(F^+(Cl(A))(F^-{f Cl(A)}) \) is \(\gamma \)-open in \(X \) for every \(A \in SO(Y) \).

(4) \(F^{-}(\text{Int} (\text{Cl} (A))) (F^{+}(\text{Int} (\text{Cl} (A)))) \) is \(\gamma \)-closed in \(X \) for every \(A \in \text{PO}(Y) \).

\[\text{Proof. } (1) \Rightarrow (2): \text{Let } A \in \beta O(Y). \text{ By Theorem 2.22 of [15], } \text{Cl} (A) \text{ is regular closed. Thus, } F^{+} (\text{Cl} (A)) \text{ is } \gamma \text{-open.} \]

(2) \Rightarrow (3): It follows from the fact that \(SO(Y) \subset \beta O(Y) \).

(3) \Rightarrow (4): Let \(A \in \text{PO}(Y) \). This implies that \(Y \setminus \text{Int} (\text{Cl} (A)) \) is regular closed and semi-open. Hence, \(X \setminus F^{-} (\text{Int} (\text{Cl} (A))) = F^{+} (Y \setminus \text{Int} (\text{Cl} (A))) = F^{+} (\text{Cl} (Y \setminus \text{Int} (\text{Cl} (A)))) \) is \(\gamma \)-open. Thus, \(F^{-} (\text{Int} (\text{Cl} (A))) \) is \(\gamma \)-closed.

(4) \Rightarrow (1): Let \(A \in \text{RO}(Y) \). This implies that \(A \in \text{PO}(Y) \) and \(F^{-} (A) = F^{-} (\text{Int} (\text{Cl} (A))) \) is \(\gamma \)-closed. Hence, \(F \) is upper almost contra-\(\gamma \)-continuous. \[\square \]

Theorem 2.22. Let \(F : X \rightarrow Y \) be a multifunction. If the graph multifunction of \(F \) is upper contra-\(\gamma \)-continuous, then \(F \) is upper contra-\(\gamma \)-continuous.

\[\text{Proof. } \text{Let } G_{F} : X \rightarrow X \times Y \text{ be upper contra-\(\gamma \)-continuous and } x \in X. \text{ Let } A \text{ be any closed set of } Y \text{ containing } F(x). \text{ Since } X \times A \text{ is closed in } X \times Y \text{ and } G_{F}(x) \subset X \times A, \text{ there exists a } \gamma \text{-open set } U \text{ containing } x \text{ such that } G_{F}(U) \subset X \times A. \text{ By Lemma 1.6, } U \subset G_{F}^{+}(X \times A) = F^{+} (A) \text{ and } F(U) \subset A. \text{ Thus, } F \text{ is upper contra-\(\gamma \)-continuous.} \]

Theorem 2.23. Let \(F : X \rightarrow Y \) be a multifunction. If \(G_{F} : X \rightarrow X \times Y \) is lower contra-\(\gamma \)-continuous, then \(F \) is lower contra-\(\gamma \)-continuous.

\[\text{Proof. } \text{Let } G_{F} \text{ be lower contra-\(\gamma \)-continuous and } x \in X. \text{ Let } A \text{ be any closed set in } Y \text{ such that } x \in F^{-} (A). \text{ This implies that } X \times A \text{ is closed in } X \times Y \text{ and } \]

\[G_{F}(x) \cap (X \times A) = (\{x\} \times F(x)) \cap (X \times A) = \{x\} \times (F(x) \cap A) \neq \phi. \]

Since \(G_{F} \) is lower contra-\(\gamma \)-continuous, there exists an \(\gamma \)-open set \(U \) containing \(x \) such that \(U \subset G_{F}^{-}(X \times A) \). By Lemma 1.6, \(U \subset F^{-} (A) \). Thus, \(F \) is lower contra-\(\gamma \)-continuous. \[\square \]

References

