On Fixed Points of Weakly Commuting Mappings with Property (E.A)

Shaban Sedghi *, Cihangir Alaca † and Nabi Shobe ‡

* Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
† Department of Mathematics, Faculty of Science and Arts, Celal Bayar University, Muradiye Campus 45140 Manisa, Turkey.
‡ Department of Mathematics, Islamic Azad University-Babol Branch, Iran.

(Received: 5 December 2011, Accepted: 30 January 2012)

In this paper, we establish a common fixed point theorem for weakly commuting mappings in complete fuzzy metric spaces using the property (E.A).

Keywords: Fuzzy metric space; (E.A) property; weakly commuting mappings.

AMS Subject Classification: 54E40, 54E35, 54H25.

1. Introduction and Preliminaries

The concept of fuzzy sets was introduced initially by Zadeh [1] in 1965. Since then, to use this concept in topology and analysis, many authors have expansively developed the theory of fuzzy sets and application. George and Veeramani [2] and Kramosil and Michalek [3] have introduced the concept of fuzzy topological spaces induced by fuzzy metric. Many authors [4–14] have studied different properties, for e.g., topological, fixed point properties and applications of fuzzy (probabilistic) metric spaces and also its generalized and different versions. Recently, Kumar [15] proved a common fixed point theorem for a pair of weakly compatible maps under E.A. property and Wadhwa et al. [16] defined a E. A. like property and proved common fixed point theorems in fuzzy metric spaces.

Definition 1.1 [17] A binary operation \(* : [0, 1] \times [0, 1] \rightarrow [0, 1] \) is a continuous \(t \)-norm if it satisfies the following conditions:

1. \(* \) is associative and commutative,
2. \(* \) is continuous,
3. \(a * 1 = a \) for all \(a \in [0, 1] \),
4. \(a * b \leq c * d \) whenever \(a \leq c \) and \(b \leq d \), for each \(a, b, c, d \in [0, 1] \).

Two typical examples of a continuous \(t \)-norm are \(a * b = ab \) and \(a * b = \min(a, b) \).

Definition 1.2 [2] A 3-tuple \((X, M, \ast)\) is called a fuzzy metric space if \(X \) is an arbitrary (non-empty) set, \(\ast \) is a continuous \(t \)-norm and \(M \) is a fuzzy set on \(X^2 \times (0, \infty) \), satisfying the following conditions for each \(x, y, z \in X \) and \(t, s > 0 \),

1. \(M(x, y, t) > 0 \),
(2) \(M(x, y, t) = 1 \) if and only if \(x = y \),
(3) \(M(x, y, t) = M(y, x, t) \),
(4) \(M(x, y, t) \cdot M(y, z, s) \leq M(x, z, t+s) \),
(5) \(M(x, y, \cdot) : (0, \infty) \rightarrow [0, 1] \) is continuous.

Let \((X, M, \ast)\) be a fuzzy metric space. For \(t > 0 \), the open ball \(B(x, r, t) \) with center \(x \in X \) and radius \(0 < r < 1 \) is defined by

\[
B(x, r, t) = \{ y \in X : M(x, y, t) > 1 - r \}.
\]

If \((X, M, \ast)\) is a fuzzy metric space, let \(\tau \) be the set of all \(A \subset X \) with \(x \in A \) if and only if there exist \(t > 0 \) and \(0 < r < 1 \) such that \(B(x, r, t) \subset A \). Then \(\tau \) is a topology on \(X \) (induced by the fuzzy metric \(M \)). This topology is Hausdorff and first countable. A sequence \(\{x_n\} \) in \(X \) converges to \(x \) if and only if \(M(x_n, x, t) \rightarrow 1 \) as \(n \rightarrow \infty \), for each \(t > 0 \). It is called a Cauchy sequence if for each \(0 < \varepsilon < 1 \) and \(t > 0 \), there exists \(n_0 \in \mathbb{N} \) such that \(M(x_n, x_m, t) > 1 - \varepsilon \) for each \(n, m \geq n_0 \). The fuzzy metric space \((X, M, \ast)\) is said to be complete if every Cauchy sequence is convergent. A subset \(A \) of \(X \) is said to be \(F \)-bounded if there exists \(t > 0 \) and \(0 < r < 1 \) such that \(M(x, y, t) > 1 - r \) for all \(x, y \in A \).

Example 1.3 Let \(X = \mathbb{R} \). Put \(a \ast b = ab \) for all \(a, b \in [0, 1] \). For each \(t \in (0, \infty) \), define

\[
M(x, y, t) = \frac{t}{t + |x - y|}
\]

for all \(x, y \in X \).

Lemma 1.4 [18] Let \((X, M, \ast)\) be a fuzzy metric space. Then \(M(x, y, t) \) is non-decreasing with respect to \(t \), for all \(x, y \) in \(X \).

Definition 1.5 Let \((X, M, \ast)\) be a fuzzy metric space. Then \(M \) is said to be continuous on \(X^2 \times (0, \infty) \) if

\[
\lim_{n \to \infty} M(x_n, y_n, t_n) = M(x, y, t),
\]

whenever a sequence \(\{(x_n, y_n, t_n)\} \) in \(X^2 \times (0, \infty) \) converges to a point \((x, y, t) \in X^2 \times (0, \infty) \). i.e.,

\[
\lim_{n \to \infty} M(x_n, x, t) = \lim_{n \to \infty} M(y_n, y, t) = 1 \text{ and } \lim_{n \to \infty} M(x, y, t_n) = M(x, y, t).
\]

Lemma 1.6 Let \((X, M, \ast)\) be a fuzzy metric space. Then \(M \) is a continuous function on \(X^2 \times (0, \infty) \).

Proof See [19, Proposition 1].

Definition 1.7 [20] Let \(A \) and \(S \) be mappings from a fuzzy metric space \((X, M, \ast)\) into itself. Then the mappings are said to be weak compatible if they commute at a coincidence point, that is, \(Ax = Sx \) implies that \(ASx = SAx \).

Definition 1.8 [21] Let \(A \) and \(S \) be mappings from a fuzzy metric space \((X, M, \ast)\) into itself. Then the mappings are said to be weakly commuting if

\[
M(ASx, SAx, t) \geq M(Ax, Sx, t), \quad \text{for all } t > 0, \ x \in X.
\]

Example 1.9 Let \((X, M, \ast)\) be a fuzzy metric space, where \(X = [0, 1] \), with t-norm defined \(a \ast b = \min\{a, b\} \), for all \(a, b \in [0, 1] \) and \(M(x, y, t) = \frac{t}{t + |x - y|} \) for all \(t > 0 \) and \(x, y \in X \). Define self-maps \(A \) and \(S \) on \(X \) as follows:

\[
Ax = \frac{x}{8}, \quad Sx = \frac{x}{x + 16}
\]
for any \(x \in X \).

\[
M(ASx, SAx, t) = M\left(\frac{x}{x+128}, \frac{x}{8x+128}, t\right) = \frac{t}{t + \left|\frac{x}{8} - \frac{x}{x+128}\right|} = M(Ax, Sx, t), \quad \text{for all } t > 0.
\]

Thus \(S \) and \(A \) satisfy in above definition but do not commute for any \(x \neq 0 \).

2. The Main Results

Let \(\Psi \) denote a family of mappings such that for each \(\psi \in \Psi, \psi : [0,1]^3 \rightarrow [0,1] \),

1. \(\psi(x, y, z) \) is continuous in each co-ordinate variable and,
2. \(\psi(x, y, z) = 1 \) only if \(x = y = z = 1 \) and \(\psi(u, 1, 1) \) or \(\psi(1, u, 1) \) or \(\psi(1, 1, u) > u \) for all \(u \neq 1 \).

Examples of \(\psi \) are \(\psi(x, y, z) = \max\{x, y, z\}, \psi(x, y, z) = a(t)x + b(t)y + c(t)z \), where \(a, b, c : \mathbb{R}^+ \rightarrow [0,1] \), are function such that \(a(t) + b(t) + c(t) = 1 \) for every \(t > 0 \). Other examples may also be constructed.

Definition 2.1 Let \(A, T \) and \(S \) be mappings from a fuzzy metric space \((X, M, \ast)\) into itself. Then the mappings are said have property (E.A) if there exists a sequence \(\{x_n\} \in X \) such that

\[
\lim_{n \to \infty} M(Ax_n, Sx_n, t) = \lim_{m \to \infty} M(Ax_m, Tx_m, t) = 1, \quad \text{for all } t > 0.
\]

Example 2.2 Let \((X, M, \ast)\) be a fuzzy metric space, where \(X = [0,1] \), with t-norm defined \(a \ast b = \min\{a, b\} \), for all \(a, b \in [0,1] \) and \(M(x, y, t) = \frac{t}{t + |x - y|} \) for all \(t > 0 \) and \(x, y \in X \). Define self-maps \(A \) and \(S \) on \(X \) as follows:

\[
Ax = x, \quad Sx = \begin{cases}
1 & \text{if } x \in \mathbb{Q}, \\
0 & \text{otherwise, }\end{cases} \quad Tx = x^2
\]

for any \(x \in X \). If define \(x_n = 1 - \frac{1}{n} \), then

\[
\lim_{n \to \infty} M(Ax_n, Sx_n, t) = \lim_{m \to \infty} M(Ax_m, Tx_m, t) = 1, \quad \text{for all } t > 0.
\]

Theorem 2.3 Let \(A, T \) and \(S \) be self-mappings of a complete fuzzy metric space \((X, M, \ast)\) satisfying:

1. \(M(Sx, Ty, t) \geq \psi(M(Ax, Sx, t), M(Ay, Ty, t), M(Ax, Tx, t)) \), for every \(x, y \in X \) and for every \(t > 0 \),
2. let \(A, T \) and \(S \) have property (E.A),
3. the pair \((A, S)\) and \((A, T)\) are weakly commuting and \(A \) is continuous, then \(A, S \) and \(T \) have a unique common fixed point in \(X \).

Proof Since \(A, S \) and \(T \) have property (E.A), there exists sequence \(\{x_n\} \in X \) such that

\[
\lim_{n \to \infty} M(Ax_n, Sx_n, t) = \lim_{m \to \infty} M(Ax_m, Tx_m, t) = 1, \quad \text{for all } t > 0.
\]
Now, we prove \(\{Ax_n\} \) is a Cauchy sequence. By (1), we have
\[
M(Ax_n, Ax_m, t) \geq M(Ax_n, Sx_n, t/3) * M(Sx_n, Tx_m, t/3) * M(Tx_m, Ax_m, t/3)
\]
\[
\geq M(Ax_n, Sx_n, t/3) * \psi(M(Ax_n, Sx_n, t/3), M(Ax_m, Tx_m, t/3), M(Ax_n, Tx_n, t/3))
\]
\[
* M(Tx_m, Ax_m, t/3).
\]
On making \(n \to \infty \) in above inequality and by property (2) of \(\psi \), we have
\[
\lim_{n \to \infty} M(Ax_n, Ax_m, t) \to 1.
\]
Hence \(\{Ax_n\} \) is Cauchy and the completeness of \(X \), \(\{Ax_n\} \) converges to \(z \) in \(X \). That is, \(\lim_{n \to \infty} Ax_n = \psi
\]
Since \(M(Sx_n, z, t) \geq M(Sx_n, Ax_n, t/2) * M(Ax_n, z, t/2) \),
By continuous \(M \), on making \(n \to \infty \) the above inequality, we get
\[
\lim_{n \to \infty} M(Sx_n, z, t) \geq \lim_{n \to \infty} M(Sx_n, Ax_n, t/2) * \lim_{n \to \infty} M(Ax_n, z, t/2) \to 1.
\]
Hence \(\lim_{n \to \infty} Sx_n = z \). Thus \(\lim_{n \to \infty} ASx_n = Az \).
Similarly we can prove that \(\lim_{m \to \infty} Tx_m = z \) and it implies \(\lim_{n \to \infty} ATx_m = Az \). On the other hand, by weakly commuting \((A, S) \) we have,
\[
M(SAx_n, Az, t) \geq M(SAx_n, ASx_n, t/2) * M(ASx_n, Az, t/2)
\]
\[
\geq M(Sx_n, Ax_n, t/2) * M(ASx_n, Az, t/2).
\]
On making \(n \to \infty \) the above inequality, we get \(\lim_{n \to \infty} SAx_n = Az \). Also
\[
M(TAx_m, Az, t) \geq M(TAx_m, ATx_m, t/2) * M(ATx_m, Az, t/2)
\]
\[
\geq M(Tx_m, Ax_m, t/2) * M(ATx_m, Az, t/2).
\]
On making \(m \to \infty \) the above inequality, we get \(\lim_{m \to \infty} TAx_m = Az \). We prove \(Az = z \). By (i), we get
\[
M(Sx_n, TAx_n, t) \geq \psi(M(Ax_n, Sx_n, t), M(A^2x_n, TAx_n, t), M(Ax_n, Tx_n, t)).
\]
On making \(n \to \infty \) the above inequality, we get
\[
M(z, Az, t) \geq \psi(1, 1, 1) = 1,
\]
i.e., \(Az = z \). Similarly, we prove that \(Tz = z \).
\[
M(z, Tz, t) = M(Az, Tz, t) \geq M(Az, SAx_n, et) * M(SAx_n, Tz, (1 - \epsilon)t)
\]
\[
\geq M(Az, SAx_n, et) * \psi(M(A^2x_n, SAx_n, (1 - \epsilon)t), M(Az, Tz, (1 - \epsilon)t), M(A^2x_n, TAx_n, (1 - \epsilon)t)).
\]
For every $0 < \epsilon < 1$, on making $n \to \infty$ the above inequality, we get

$$M(z, Tz, t) \geq 1 * \psi(1, M(z, Tz, (1 - \epsilon)t), 1).$$

On making $\epsilon \to 0$ we have

$$M(z, Tz, t) \geq \psi(1, M(z, Tz, t), 1).$$

If $Tz \neq z$, by property of ψ it follows that $M(z, Tz, t) > M(z, Tz, t)$, is a contradiction. Hence $Tz = z$. We prove that $Sz = z$. If $Sz \neq z$ then

$$M(Sz, z, t) = M(Sz, Tz, t) \geq \psi(M(Az, Sz, t), M(Az, Tz, t), M(Az, Tz, t))$$

$$> M(z, Sz, t),$$

is a contradiction. Therefore $Sz = z$. Hence $Az = Tz = Sz = z$, that is, z is a common fixed of A, S and T.

Uniqueness, let z' be another common fixed point of A, S and T. Then $Az' = Sz' = Tz' = z'$ and by (1), we have

$$M(z', z, t) = M(Sz', Tz, t) \geq \psi(M(Az', Sz', t), M(Az, Tz, t), M(Az', Tz', t))$$

$$= \psi(1, 1, 1) = 1.$$

Therefore, $z = z'$ that is z is the unique common fixed point of self-maps A, S and T.

Corollary 2.1 Let A, T and S be self-mappings of a complete fuzzy metric space $(X, M, *)$ satisfying:

1. $M(Sx, Ty, t) \geq a(t)M(Ax, Sx, t) + b(t)M(Ay, Ty, t) + c(t)M(Ax, Tx, t)$, for every $x, y \in X$, where $a, b, c : \mathbb{R}^+ \to [0, 1]$, are function such that $a(t) + b(t) + c(t) = 1$ for every $t > 0$,
2. let A, T and S have property (E.A),
3. the pair (A, S) and (A, T) are weakly commuting and A is continuous, then A, S and T have a unique common fixed point in X.

Proof By Theorem 2.3, it is enough set $\psi(x, y, z) = a(t)x + b(t)y + c(t)z$.

Example 2.4 Let $(X, M, *)$ be a fuzzy metric space, where $X = [0, 1]$, with t-norm defined $a * b = \min\{a, b\}$, for all $a, b \in [0, 1]$ and $M(x, y, t) = \frac{t}{t + |x - y|}$ for all $t > 0$ and $x, y \in X$. Define self-maps A and S on X as follows:

$$Tx = 0, \quad Ax = \frac{x}{8}, \quad Sx = \frac{x}{x + 16}$$

for any $x \in X$.

$$M(ASx, SAx, t) = M(\frac{x}{x + 128}, \frac{x}{8x + 128}, t) = \frac{t}{t + \frac{|x - x|}{x + 16}} = M(Ax, Sx, t), \quad \text{for all } t > 0.$$

Thus (A, S) is weakly commuting. Also, $M(ATAx, TAx, t) = 1 \geq M(Ax, Tx, t)$, i.e., (A, T) is weakly commuting. If define sequence $x_n = \frac{1}{n}$, then it is easy to see that

$$\lim_{n \to \infty} M(AXn, TXn, t) = \lim_{m \to \infty} M(Ax_m, Sx_m, t) = 1.$$
Thus by \(a = c = 0\) and \(b = 1\), it follows that the all conditions of Corollary 2.1 are holds, and \(x_0 = 0\) is a unique fixed point of \(A, S\) and \(T\).

Corollary 2.2 Let \(S_i, T_j\) and \(A\) be self-mappings of a complete fuzzy metric space \((X, M, *)\) satisfying:

1. \(M(S_ix, T_jy, t) \geq a(t)M(Ax, S_ix, t) + b(t)M(Ay, T_jy, t) + c(t)M(Ax, T_jx, t)\), for every \(x, y \in X\) and \(i, j = 1, 2, \ldots\), where \(a, b, c: \mathbb{R}^+ \rightarrow [0, 1]\), are function such that \(a(t) + b(t) + c(t) = 1\) for every \(t > 0\),
2. there exists \(i_0, j_0 \in \mathbb{N}\) such that \(A, T_{i_0}\) and \(S_{j_0}\) have property (E.A),
3. the pair \((A, S_{i_0})\) and \((A, T_{j_0})\) are weakly commuting and \(A\) is continuous, then \(A, S_i\) and \(T_j\) have a unique common fixed point in \(X\) for \(i, j = 1, 2, \ldots\).

Proof By Corollary 2.1, \(A\) and \(S_{i_0}\) and \(T_{j_0}\) for some \(i_0, j_0 \in \mathbb{N}\), have a unique common fixed point in \(X\). That is, there exists a unique \(z \in X\) such that

\[
Az = S_{i_0}(z) = T_{j_0}(z) = z.
\]

Suppose there exists \(i \in \mathbb{N}\) such that \(i \neq i_0\). Then we have

\[
M(S_ix, z, t) = M(S_i z, T_{j_0}z, t) \geq a(t)M(Az, S_i z, t) + b(t)M(Az, T_{j_0}z, t) + c(t)M(Az, T_{j_0}z, t),
\]

Hence we get

\[
M(S_i z, z, t) \geq a(t)M(z, S_i z, t) + b(t)M(z, z, t) + c(t)M(z, z, t) > M(z, z, t),
\]

is a contradiction. Hence for every \(i \in \mathbb{N}\), it follows that \(S_i(z) = z\). Similarly for every \(j \in \mathbb{N}\), we get \(T_j z = z\). Therefore for every \(i, j \in \mathbb{N}\), we have

\[
S_i z = T_j z = Az = z.
\]

Corollary 2.3 Let \(A\) be a self-mapping of a complete fuzzy metric space \((X, M, *)\) satisfying:

1. \(M(x, y, t) \geq a(t)M(Ax, x, t) + b(t)M(Ay, y, t) + c(t)M(Ax, x, t)\), for every \(x, y \in X\), where \(a, b, c: \mathbb{R}^+ \rightarrow [0, 1]\), are functions such that \(a(t) + b(t) + c(t) = 1\) for every \(t > 0\).

If there exists a sequence \(\{x_n\}\), such that \(\lim_{n \to \infty} M(Ax_n, x_n, t) = 1\), then \(A\) have a unique common fixed point in \(X\).

Proof It is enough set \(S = T = I\), identity map in Corollary 2.1.

3. Open Problem

How can obtain some results of this paper for intuitionistic fuzzy metric spaces?

4. Acknowledgement

The authors would like to thank the referee and the editorial team for giving useful suggestions and comments for the improvement of this paper.

References

REFERENCES

