RESEARCH ARTICLE

On New Types of Grill Sets and A Decomposition of Continuity

O. Ravi * and S. Ganesan †

* Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.
† Department of Mathematics, N. M. S. S. V. N College, Nagamalai, Madurai, Tamil Nadu, India.

(Received: 24 October 2010, Accepted: 13 February 2011)

In the present paper, we introduce the notions of g^α-sets, G^α-sets, g^α-continuity and G^α-continuity and investigate the relation between such sets (functions) with other grill sets (functions) and obtain a decomposition of continuity.

Keywords: Topological space; Grill; τ_G-closed set; G^α-open set and G^α-continuous function

AMS Subject Classification: 54C10, 54C08, 54C05.

1. Introduction

The idea of grill on a topological space was first introduced by Choquet [1] in 1947. It is observed from literature that the concept of grills is a powerful supporting tool, like nets and filters, in dealing with many a topological concept quite effectively. In [2], Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space. In [3], Ravi and Ganesan have defined and studied G^α-open sets and G^α-continuous functions in grill topological spaces. In this paper, we introduce the notions of ga^α-sets, Ga^α-sets, ga^α-continuous functions and Ga^α-continuous functions and investigate the relation between such sets (functions) with other grill sets (functions) and obtain a decomposition of continuity.

2. Preliminaries

Throughout this paper, (X, τ) (or X) represent a topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space X, $Cl(A)$ and $Int(A)$ denote the closure of A and the interior of A, respectively. The power set of X will be denoted by $\wp(X)$. A collection G of a nonempty subsets of a space X is called a grill [1] on X if

1. $A \in G$ and $A \subset B \Rightarrow B \in G$,
2. $A, B \subset X$ and $A \cup B \in G \Rightarrow A \in G$ or $B \in G$.

For any point x of a topological space (X, τ), $\tau(x)$ denote the collection of all open neighborhoods of x.

We recall the following results which are useful in the sequel.

*Email: siingam@yahoo.com
Definition 2.1 [2] Let (X, τ) be a topological space and G be a grill on X. The mapping $\Phi : \wp(X) \rightarrow \wp(X)$, denoted by $\Phi_G(A, \tau)$ for $A \in \wp(X)$ or simply $\Phi(A)$ called the operator associated with the grill G and the topology τ and is defined by $\Phi_G(A) = \{ x \in X | A \cap U \in G, \forall U \in \tau(x) \}$.

Let G be a grill on a space X. Then a map $\Psi : \wp(X) \rightarrow \wp(X)$ is defined by $\Psi(A) = A \cup \Phi(A)$, for all $A \in \wp(X)$. The map Ψ satisfies Kuratowski closure axioms. Corresponding to a grill G on a space (X, τ), there exists a unique topology τ_G on X given by $\tau_G = \{ U \subset X | \Psi(X - U) = X - U \}$, where for any $A \subset X$, $\Psi(A) = A \cup \Phi(A) = \tau_G - Cl(A)$. For any grill G on a topological space (X, τ), $\tau \subset \tau_G$. If (X, τ) is a topological space and G is a grill on X, then we denote a grill topological space by (X, τ, G).

Theorem 2.2 [2]

1. If G_1 and G_2 are two grills on a space X with $G_1 \subset G_2$, then $\tau_{G_1} \subset \tau_{G_2}$.
2. If G is a grill on a space X and $B \notin G$, then B is closed in (X, τ, G).
3. For any subset A of a space X and any grill G on X, $\Phi(A)$ is τ_G-closed.

Theorem 2.3 [2] Let (X, τ) be a topological space and G be any grill on X. Then

1. $A \subseteq B(\subseteq X) \Rightarrow \Phi(A) \subseteq \Phi(B)$;
2. $A \subseteq X$ and $A \notin G \Rightarrow \Phi(A) = \phi$;
3. $\Phi(\Phi(A)) \subseteq \Phi(A) = Cl(\Phi(A)) \subseteq Cl(A)$, for any $A \subseteq X$;
4. $\Phi(A \cup B) = \Phi(A) \cup \Phi(B)$ for any $A, B \subseteq X$;
5. $A \subseteq \Phi(A) \Rightarrow Cl(A) = \tau_G - Cl(A) = Cl(\Phi(A)) = \Phi(A)$;
6. $U \in \tau$ and $\tau \setminus \{ \phi \} \subseteq G \Rightarrow U \subseteq \Phi(U)$;
7. If $U \in \tau$ then $U \cap \Phi(A) = U \cap \Phi(U) \cap A$, for any $A \subseteq X$.

Theorem 2.4 Let (X, τ) be a topological space and G be any grill on X. Then, for any $A, B \subseteq X$,

1. $A \subseteq \Psi(A)$ [2];
2. $\Psi(\phi) = \phi$ [2];
3. $\Psi(A \cup B) = \Psi(A) \cup \Psi(B)$ [2];
4. $\Psi(\Psi(A)) = \Psi(A)$ [2];
5. $Int(\Psi(A)) \subset Int(\Psi(A))$;
6. $Int(\Psi(A \cap B)) \subset Int(\Psi(A))$;
7. $Int(\Psi(A \cap B)) \subset Int(\Psi(B))$;
8. $Int(\Psi(A)) \subset \Psi(A)$;
9. $A \subseteq B \Rightarrow \Psi(A) \subseteq \Psi(B)$.

Theorem 2.5 [3] Let (X, τ) be a topological space and G be any grill on X. Then, for any $A, B \subseteq X$,

1. $\Phi(A) \subseteq \Psi(A) = \tau_G - Cl(A) \subseteq Cl(A)$;
2. $A \cup \Psi(\Psi(\Phi(A)) \subseteq Cl(A)$;
3. $A \subseteq \Phi(A)$ and $B \subseteq \Phi(B) \Rightarrow \Psi(A \cap B) \subseteq \Psi(A) \cap \Psi(B)$.

Definition 2.6 [4] A subset A of a space (X, τ) is called an α^*-set if $Int(Cl(\Phi(A))) = Int(\Phi(A))$.

Definition 2.7 [5] Let (X, τ) be a topological space and G be a grill on X. A subset A in X is said to be:

1. Φ-open set if $A \subseteq Int(\Phi(A))$;
2. g-set if $Int(\Psi(A)) = Int(A)$;
3. $g\Phi$-set if $Int(\Psi(A)) = Int(A)$.

Definition 2.8 [5] Let (X, τ) be a topological space and G be a grill on X. A subset A in X is said to be G-preopen if $A \subseteq Int(\Psi(A))$.

Definition 2.9 [3] Let (X, τ) be a topological space and G be a grill on X. A subset A in X is said to be G-α-open set if $A \subseteq Int(\Psi(\Phi(A)))$. The complement of G-α-open set is said to be G-α-closed.
Remark 3.7

Definition 2.10 [5] Let \((X, \tau)\) be a topological space and \(G\) be a grill on \(X\). A subset \(A\) in \(X\) is said to be \(G\)-set (resp. \(G\Phi\)-set) if there is a \(M \in \tau\) and a \(g\)-set (resp. \(g\Phi\)-set) \(N\) in \((X, \tau, G)\) such that \(A = M \cap N\).

3. \(g\alpha^*\)-Sets and \(G\alpha^*\)-Sets

We introduce a new type of sets as follows:

Definition 3.1 Let \((X, \tau)\) be a topological space and \(G\) be a grill on \(X\). A subset \(A\) in \(X\) is said to be \(g\alpha^*\)-set if \(\text{Int}(\Phi(\text{Int}(A))) = \text{Int}(A)\).

Definition 3.2 Let \((X, \tau)\) be a topological space and \(G\) be a grill on \(X\). A subset \(A\) in \(X\) is said to be \(G\alpha^*\)-set if there is a \(M \in \tau\) and a \(g\alpha^*\)-set \(N\) in \((X, \tau, G)\) such that \(A = M \cap N\).

Example 3.3 Let \(X = \{a, b, c\}\) and \(\tau = \{\phi, X, \{a\}, \{b, c\}\}\). If \(G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}\), then \(G\) is a grill on \(X\) such that \(\tau - \{\phi\} \subset G\).

Example 3.4 Let \(X = \{a, b, c\}\) and \(\tau = \{\phi, X, \{a, b\}\}\). If \(G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}\), then \(G\) is a grill on \(X\) such that \(\tau - \{\phi\} \subset G\).

Example 3.5 Let \(X = \{a, b, c\}\) and \(\tau = \{\phi, X, \{a\}\}\). If \(G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}\), then \(G\) is a grill on \(X\) such that \(\tau - \{\phi\} \subset G\).

Example 3.6 Let \(X = \{a, b, c\}\) and \(\tau = \{\phi, X, \{a, b\}\}\). If \(G = \{X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}\), then \(G\) is a grill on \(X\) such that \(\tau - \{\phi\} \subset G\).

Remark 3.7

(1) Every open set is \(G\alpha^*\)-set but not conversely.
(2) Every \(g\alpha^*\)-set is \(G\alpha^*\)-set but not conversely.

In Example 3.4,

(1) Here \(\{a, c\}\) is \(G\alpha^*\)-set but not open set.
(2) Here \(\{a, b\}\) is \(G\alpha^*\)-set but not \(g\alpha^*\)-set.

Remark 3.8 [5]

(1) Every \(g\Phi\)-set is \(g\)-set but not conversely.
(2) Every \(g\Phi\)-set is \(G\Phi\)-set but not conversely.
(3) Every \(g\)-set is \(G\)-set but not conversely.
(4) Every \(G\)-set is \(G\Phi\)-set but not conversely.
(5) Every open set is \(G\)-set but not conversely.
(6) Every open set is \(G\Phi\)-set but not conversely.

Proposition 3.9 [5] Every open set is \(G\)-preopen set.

Remark 3.10 The converse of Proposition 3.9 is not true.

In Example 3.3, \(\{a, b\}\) is \(G\)-preopen set but not open set.

Proposition 3.11 [3] Every open set is \(G\alpha\)-open set but not conversely.

Proposition 3.12 Every closed set is a \(g\)-set.

Proof Let \(A\) be a closed set. Then \(\Psi(A) = A \cup \Phi(A) \subseteq A \cup \text{Cl}(A)\) (by Theorem 2.3 (3)) and \(\Psi(A) \subseteq \text{Cl}(A) = A\). We have \(\Psi(A) \subseteq A\). But \(A \subseteq \Psi(A)\). Therefore \(\Psi(A) = A\) implies \(\text{Int}(\Psi(A)) = \text{Int}(A)\). Thus \(A\) is a \(g\)-set.

Remark 3.13 The converse of Proposition 3.12 is not true.

In Example 3.3, \(\{a, c\}\) is \(g\)-set but not closed.
Remark 3.14 G-α-open sets and $g\alpha^*$-sets are independent of each other.

Example 3.15 In Example 3.5, the set $\{b,c\}$ is an $g\alpha^*$-set but it is not a G-α-open. Since every open set is an G-α-open set, $\{a\}$ is G-α-open set but it is not a $g\alpha^*$-set.

Proposition 3.16 Any τ_G-closed set is an $g\alpha^*$-set($G\alpha^*$-set).

Proof Let A be a subset in (X,τ,G). Then $\Phi(A)$ is τ_G-closed. Now $\text{Int}(\Phi(A)) \subseteq \Phi(A)$ implies $\Psi(\text{Int}(\Phi(A))) \subseteq \Psi(\Phi(A))$. Then $\text{Int}(\Psi(\text{Int}(\Phi(A)))) \subseteq \text{Int}(\Phi(A)) = \text{Int}(\Phi(A))$ (since every τ_G-closed is equivalent to g-set [5]). On other hand, $\text{Int}(\Phi(A)) \subseteq \Psi(\text{Int}(\Phi(A)))$ implies $\text{Int}(\Phi(A)) \subseteq \text{Int}(\Psi(\Phi(A)))$. Therefore $\text{Int}(\Psi(\Phi(A))) = \text{Int}(\Phi(A))$. Thus $\Phi(A)$ is $g\alpha^*$-set. Also, by Remark 3.7, $\Phi(A)$ is $G\alpha^*$-set.

Remark 3.17 The converse of Proposition 3.16 is not true.

In Example 3.5, $\{a\}$ is $G\alpha^*$-set but not τ_G-closed.

In Example 3.3, $\{b\}$ is $g\alpha^*$-set but not τ_G-closed.

Proposition 3.18 Every $g\Phi$-set is $g\alpha^*$-set.

Proof Since $\Phi(\text{Int}(A)) \subseteq \Phi(A)$, $\text{Int}(\Phi(\text{Int}(A))) \subseteq \text{Int}(\Phi(A)) = \text{Int}(A)$. We have $\text{Int}(\Phi(\text{Int}(A))) \subseteq \text{Int}(A)$. Now $\text{Int}(\Psi(\Phi(\text{Int}(A)))) = \text{Int}(\text{Int}(A) \cup \Phi(\text{Int}(A))) \supseteq \text{Int}(\text{Int}(A)) \cup \text{Int}(\Phi(\text{Int}(A))) = \text{Int}(A)$. Hence A is $g\alpha^*$-set.

Remark 3.19 The converse of Proposition 3.18 is not true.

In Example 3.3, $\{a,b\}$ is $g\alpha^*$-set but not $g\Phi$-set.

Remark 3.20 $G\Phi$-sets and $g\alpha^*$-sets are independent of each other.

In Example 3.5, $\{a\}$ is $G\Phi$-set but not $g\alpha^*$-set.

In Example 3.4, $\{a\}$ is $g\alpha^*$-set but not $G\Phi$-set.

Proposition 3.21 Every α^*-set is a $g\alpha^*$-set.

Proof $\Psi(\text{Int}(A)) = \text{Int}(A) \cup \Phi(\text{Int}(A)) \subset \text{Int}(A) \cup \text{Cl}(\text{Int}(A)) = \text{Cl}(\text{Int}(A))$. Then $\text{Int}(\Psi(\text{Int}(A))) \subseteq \text{Int}(\text{Cl}(\text{Int}(A))) = \text{Int}(A)$. On other hand, $\text{Int}(A) \subseteq \Psi(\text{Int}(A))$ implies $\text{Int}(A) \subseteq \text{Int}(\Psi(\text{Int}(A)))$. Therefore $\text{Int}(\Psi(\Phi(\text{Int}(A)))) = \text{Int}(A)$. Thus A is $g\alpha^*$-set.

Proposition 3.22 If A, B are two $g\alpha^*$-sets then $A \cap B$ is a $g\alpha^*$-set.

Proof $\text{Int}(A \cap B) \subset \text{Int}(\Psi(\text{Int}(A \cap B))) = \text{Int}(\Psi(\text{Int}(A) \cap \text{Int}(B))) = \text{Int}(\Psi(\text{Int}(A) \cap \text{Int}(B))) \cap \Psi(\text{Int}(A) \cap \text{Int}(B)) = \text{Int}(\Psi(\text{Int}(A) \cap \text{Int}(B))) \cap \text{Int}(\Psi(\text{Int}(A) \cap \text{Int}(B))) \subset \text{Int}(\Psi(\text{Int}(A))) \cap \text{Int}(\Psi(\text{Int}(B))) = \text{Int}(A) \cap \text{Int}(B) = \text{Int}(A \cap B)$. Then $A \cap B$ is $g\alpha^*$-set.

Remark 3.23 The union of two $g\alpha^*$-sets need not be a $g\alpha^*$-set.

Example 3.24 In Example 3.6, the set $\{a\}$ and the set $\{b\}$ are $g\alpha^*$-sets, but $\{a\} \cup \{b\} = \{a,b\}$ is not a $g\alpha^*$-set.

Proposition 3.25 Every $G\Phi$-set is $G\alpha^*$-set.

Proof It follows from Definitions and Proposition 3.18.

Remark 3.26 The converse of Proposition 3.25 is not true.

In Example 3.3, $\{b\}$ is $G\alpha^*$-set but not $G\Phi$-set.

Proposition 3.27 [5] A subset A in a space (X,τ,G) is open if and only if it is a G-preopen and a G-set.

Proposition 3.28 Every G-set is $G\alpha^*$-set.

Proof It follows from Remark 3.8 (4) and Proposition 3.25.

Remark 3.29 The converse of Proposition 3.28 is not true.
In Example 3.3, \(\{a, b\} \) is \(G\alpha^* \)-set but not \(G\)-set.

Proposition 3.30 [3] Every \(G\)-\(\alpha\)-open set is \(G\)-preopen set but not conversely.

Remark 3.31 \(g\) sets and \(G\)-preopen sets are independent of each other.

In Example 3.5,
(1) \(\{a, b\} \) is \(G\)-preopen set but not \(g\)-set.
(2) \(\{c\} \) is \(g\)-set but not \(G\)-preopen set.

Remark 3.32 [5] \(G\)-sets and \(G\)-preopen sets are independent of each other.

Proposition 3.33 Every \(g\)-set is \(G\Phi\)-set.

Proof It follows from Remark 3.8 (3) and (4).

Remark 3.34 The converse of Proposition 3.33 is not true.

In Example 3.5, \(\{a\} \) is \(G\Phi\)-set but not \(g\)-set.

Remark 3.35 \(G\alpha^*\)-sets and \(G\)-\(\alpha\)-open are independent of each other.

In Example 3.5,
(1) \(\{a, b\} \) is \(G\)-\(\alpha\)-open but not \(G\alpha^*\)-set.
(2) \(\{b, c\} \) is \(G\alpha^*\)-set but not \(G\)-\(\alpha\)-open set.

Proposition 3.36 A subset \(S \) in a space \((X, \tau, G)\) is open if and only if it is an \(G\)-\(\alpha\)-open set and a \(G\alpha^*\)-set.

Proof Necessity: It follows from Remark 3.7 and Proposition 3.11.

Sufficiency: Since \(S \) is a \(G\alpha^*\)-set, then \(S = U \cap A \) where \(U \) is an open set and \(\text{Int}(\text{Int}(A)) = \text{Int}(A) \). Since \(S \) is also \(G\)-\(\alpha\)-open set, we have \(S \subset \text{Int}(\text{Int}(S)) = \text{Int}(\text{Int}(U \cap A)) = \text{Int}(\text{Int}(U) \cap \text{Int}(A)) \). Therefore \(S \) is an open set.

Remark 3.37 From the previous Propositions, Examples and Remarks, we obtain the following diagram, where \(A \rightarrow B \) (resp. \(A \not\rightarrow B \)) represents \(A \) implies \(B \) but not conversely (resp. \(A \) and \(B \) are independent of each other).

Diagram I
4. Decomposition of Continuity

Definition 4.1 [5] A function $f: (X, \tau, G) \to (Y, \sigma)$ is said to be G-continuous (resp. $G\Phi$-continuous, G-precontinuous) if for each open set in Y, $f^{-1}(V)$ is G-set (resp. $G\Phi$-set, G-preopen).

We introduce a new class of mappings as follows:

Definition 4.2 A function $f: (X, \tau, G) \to (Y, \sigma)$ is said to be g-continuous (resp. $g\Phi$-continuous) if for each open set in Y, $f^{-1}(V)$ is g-set (resp. $g\Phi$-set).

Definition 4.3 A function $f: (X, \tau, G) \to (Y, \sigma)$ is said to be Ga^*-continuous (resp. ga^*-continuous) if for each open set in Y, $f^{-1}(V)$ is Ga^*-set (resp. ga^*-set).

Proposition 4.4 Every ga^*-continuous function is Ga^*-continuous but not conversely.

Proof This is an immediate consequence of Remark 3.7.

Example 4.5 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\emptyset\} \subset G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\emptyset, Y, \{a\}\}$. Let $f : (X, \tau, G) \to (Y, \sigma)$ be defined as follows $f(a) = f(b) = a$ and $f(c) = b$. The inverse image of the open set $\{a\}$ is $\{a, b\}$ which is Ga^*-set but it is not a ga^*-set.

Proposition 4.6 Every G-continuous function is Ga^*-continuous but not conversely.

Proof This is an immediate consequence of Proposition 3.28.

Example 4.7 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\emptyset\} \subset G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\emptyset, Y, \{a\}\}$. Let $f : (X, \tau, G) \to (Y, \sigma)$ be defined as follows $f(a) = f(c) = a$ and $f(b) = b$. The inverse image of the open set $\{b\}$ which is Ga^*-set but it is not a G-set.

Remark 4.8 $G\Phi$-continuity and ga^*-continuity are independent as per the following examples.

Example 4.9

1. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a, b\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\emptyset\} \subset G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\emptyset, Y, \{a\}\}$. Let $f : (X, \tau, G) \to (Y, \sigma)$ be defined as follows $f(a) = a, f(b) = f(c) = b$. The inverse image of the open set $\{a\}$ is $\{a\}$ which is Ga^*-set but it is not a $G\Phi$-set.

2. Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\emptyset\} \subset G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\emptyset, Y, \{a\}\}$. Let $f : (X, \tau, G) \to (Y, \sigma)$ be defined as follows $f(a) = a, f(b) = f(c) = b$. The inverse image of the open set $\{a\}$ is $\{a\}$ which is $G\Phi$-set but it is not a ga^*-set.

Proposition 4.10 Every $g\Phi$-continuous function is ga^*-continuous but not conversely.

Proof This is an immediate consequence of Proposition 3.18.

Example 4.11 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\emptyset\} \subset G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\emptyset, Y, \{b\}\}$. Let $f : (X, \tau, G) \to (Y, \sigma)$ be defined as follows $f(a) = f(c) = a$ and $f(b) = b$. The inverse image of the open set $\{b\}$ is $\{b\}$ which is Ga^*-set but it is not a $G\Phi$-set.

Proposition 4.12 Every $G\Phi$-continuous function is Ga^*-continuous but not conversely.

Proof This is an immediate consequence of Proposition 3.25.

Example 4.13 Let $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\emptyset\} \subset G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\emptyset, Y, \{b\}\}$. Let $f : (X, \tau, G) \to (Y, \sigma)$ be defined as follows $f(a) = b = f(c)$ and $f(b) = b$. The inverse image of the open set $\{b\}$ is $\{b\}$ which is Ga^*-set but it is not a $G\Phi$-set.

Remark 4.14 G-precontinuity and G-continuity are independent of each other.
Remark 4.15 [5] Every G-continuous function is $G\Phi$-continuous but not conversely.

Proposition 4.16 Every $g\Phi$-continuous function is g-continuous but not conversely.

Proof This is an immediate consequence of Remark 3.8 (1).

Example 4.17 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. If $G = \{X, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\phi\} \subseteq G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\phi, Y, \{a\}\}$. Let $f : (X, \tau, G) \rightarrow (Y, \sigma)$ be defined as follows $f(a) = a$, $f(b) = c$ and $f(c) = b$. The inverse image of the open set $\{a\}$ is $\{a\}$ which is g-set but it is not a $g\Phi$-set.

Proposition 4.18 Every $g\Phi$-continuous function is G-continuous but not conversely.

Proof This is an immediate consequence of Remark 3.8 (2).

Example 4.19 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a, b\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\phi\} \subseteq G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\phi, Y, \{a\}\}$. Let $f : (X, \tau, G) \rightarrow (Y, \sigma)$ be defined as follows $f(a) = f(b) = a$ and $f(c) = b$. The inverse image of the open set $\{a\}$ is $\{a, b\}$ which is $G\Phi$-set but it is not a $g\Phi$-set.

Proposition 4.20 Every g-continuous function is G-continuous but not conversely.

Proof This is an immediate consequence of Remark 3.8 (3).

Example 4.21 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\phi\} \subseteq G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\phi, Y, \{a\}\}$. Let $f : (X, \tau, G) \rightarrow (Y, \sigma)$ be defined as follows $f(a) = f(b) = a$ and $f(c) = b$. The inverse image of the open set $\{a\}$ is $\{a\}$ which is G-set but it is not a g-set.

Proposition 4.22 Every continuous function is G-continuous but not conversely.

Proof This is an immediate consequence of Remark 3.8 (5).

Example 4.23 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\phi\} \subseteq G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\phi, Y, \{a\}\}$. Let $f : (X, \tau, G) \rightarrow (Y, \sigma)$ be defined as follows $f(a) = f(c) = b$ and $f(b) = a$. The inverse image of the open set $\{a\}$ is $\{c\}$ which is G-set but it is not an open set.

Proposition 4.24 Every continuous function is G-precontinuous but not conversely.

Proof This is an immediate consequence of Proposition 3.9.

Example 4.25 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\phi\} \subseteq G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\phi, Y, \{a\}\}$. Let $f : (X, \tau, G) \rightarrow (Y, \sigma)$ be defined as follows $f(a) = f(c) = b$ and $f(b) = a$. The inverse image of the open set $\{a\}$ is $\{b\}$ which is G-preopen set but it is not an open set.

Proposition 4.26 Every g-continuous function is $G\Phi$-continuous but not conversely.

Proof This is an immediate consequence of Proposition 3.33.

Example 4.27 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ then G is a grill on X such that $\tau - \{\phi\} \subseteq G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\phi, Y, \{a\}\}$. Let $f : (X, \tau, G) \rightarrow (Y, \sigma)$ be defined as follows $f(a) = a$, $f(b) = c$ and $f(c) = b$. The inverse image of the open set $\{a\}$ is $\{a\}$ which is $G\Phi$-set but it is not a $g\Phi$-set.

Remark 4.28 g-continuity and G-precontinuity are independent as per the following examples.

Example 4.29 Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}\}$. If $G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$, then G is a grill on X such that $\tau - \{\phi\} \subseteq G$. Let $Y = \{a, b\}$ with topology $\sigma = \{\phi, Y, \{a\}\}$. Let $f : (X, \tau, G) \rightarrow (Y, \sigma)$ be defined as follows $f(a) = a = f(b)$ and $f(c) = b$. The inverse image of the open set $\{a\}$ is $\{a, b\}$ which is G-preopen set but it is not a g-set. Moreover, $f : (X, \tau, G) \rightarrow (Y, \sigma)$ be
defined as follows \(f(a) = b = f(b) \) and \(f(c) = a \). The inverse image of the open set \(\{a\} \) is \(\{c\} \) which is \(g \)-set but it is not a \(G \)-preopen set.

Remark 4.30 \(G\alpha^* \)-continuity and \(G\alpha \)-continuity are independent as per the following examples.

Example 4.31 Let \(X = \{a, b, c\} \) and \(\tau = \{\phi, X, \{a\}\} \). If \(G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\} \), then \(G \) is a grill on \(X \) such that \(\tau - \{\phi\} \subset G \). Let \(Y = \{a, b\} \) with topology \(\sigma = \{\phi, Y, \{a\}\} \). Let \(f : (X, \tau, G) \to (Y, \sigma) \) be defined as follows \(f(a) = a = f(b) \) and \(f(c) = b \). The inverse image of the open set \(\{a\} \) is \(\{a, b\} \) which is \(G\alpha \)-open set but it is not a \(G\alpha^* \)-set.

Example 4.32 Let \(X = \{a, b, c\} \) and \(\tau = \{\phi, X, \{a\}\} \). If \(G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\} \), then \(G \) is a grill on \(X \) such that \(\tau - \{\phi\} \subset G \). Let \(Y = \{a, b\} \) with topology \(\sigma = \{\phi, Y, \{a\}\} \). Let \(f : (X, \tau, G) \to (Y, \sigma) \) be defined as follows \(f(a) = b, f(b) = f(c) = a \). The inverse image of the open set \(\{a, b\} \) which is \(G\alpha^* \)-set but it is not a \(G\alpha \)-open set.

Proposition 4.33 Every \(G\alpha \)-continuous function is \(G \)-precontinuous but not conversely.

Proof This is an immediate consequence of Proposition 3.30.

Example 4.34 Let \(X = \{a, b, c\} \) and \(\tau = \{\phi, X, \{a\}, \{b, c\}\} \). If \(G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\} \) then \(G \) is a grill on \(X \) such that \(\tau - \{\phi\} \subset G \). Let \(Y = \{a, b\} \) with topology \(\sigma = \{\phi, Y, \{a\}\} \). Let \(f : (X, \tau, G) \to (Y, \sigma) \) be defined as follows \(f(a) = f(b) = b, f(c) = a \). The inverse image of the open set \(\{a, b\} \) which is \(G\alpha^* \)-set but it is not a \(G\alpha \)-open set.

Proposition 4.35 Every continuous function is \(G\Phi \)-continuous but not conversely.

Proof This is an immediate consequence of Remark 3.8 (4).

Example 4.36 Let \(X = \{a, b, c\} \) and \(\tau = \{\phi, X, \{a\}, \{b, c\}\} \). If \(G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\} \) then \(G \) is a grill on \(X \) such that \(\tau - \{\phi\} \subset G \). Let \(Y = \{a, b\} \) with topology \(\sigma = \{\phi, Y, \{a\}\} \). Let \(f : (X, \tau, G) \to (Y, \sigma) \) be defined as follows \(f(a) = f(c) = a \) and \(f(b) = b \). Then inverse image of the open set \(\{a\} \) is \(\{a, c\} \) which is \(G\Phi \)-set but it is not an open set.

Proposition 4.37 Every continuous function is \(G\alpha \)-continuous but not conversely.

Proof This is an immediate consequence of Proposition 3.11.

Example 4.38 Let \(X = \{a, b, c\} \) and \(\tau = \{\phi, X, \{a\}\} \). If \(G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\} \) then \(G \) is a grill on \(X \) such that \(\tau - \{\phi\} \subset G \). Let \(Y = \{a, b\} \) with topology \(\sigma = \{\phi, Y, \{a\}\} \). Let \(f : (X, \tau, G) \to (Y, \sigma) \) be defined as follows \(f(a) = f(b) = a \) and \(f(c) = b \). Then inverse image of the open set \(\{a\} \) is \(\{a, b\} \) which is \(G\alpha \)-open set but it is not an open set.

Proposition 4.39 Every continuous function is \(G\alpha^* \)-continuous but not conversely.

Proof This is an immediate consequence of Remark 3.7 (1).

Example 4.40 Let \(X = \{a, b, c\} \) and \(\tau = \{\phi, X, \{a\}, \{b, c\}\} \). If \(G = \{X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\} \) then \(G \) is a grill on \(X \) such that \(\tau - \{\phi\} \subset G \). Let \(Y = \{a, b\} \) with topology \(\sigma = \{\phi, Y, \{a\}\} \). Let \(f : (X, \tau, G) \to (Y, \sigma) \) be defined as follows \(f(a) = f(b) = a \) and \(f(c) = b \). Then inverse image of the open set \(\{a\} \) is \(\{a, b\} \) which is \(G\alpha^* \)-set but it is not an open set.

Remark 4.41 The following diagram shows the relationships established between continuity and other maps where \(A \to B \) (resp. \(A \not\to B \)) represents \(A \) implies \(B \) but not conversely (resp. \(A \) and \(B \) are independent of each other).
We have the following decomposition of continuity inspired by Proposition 3.36.

Theorem 4.42 A function \(f : (X, \tau, G) \rightarrow (Y, \sigma) \) is continuous if and only if it is a \(G-\alpha \)-continuous and a \(G\alpha^* \)-continuous.

Proof This is an immediate consequence of Proposition 3.36. \qed

References

3. O. Ravi and S. Ganesan. On \(g-\alpha \)-open sets and \(g-\alpha \)-continuous functions. Submitted.