In this paper, we introduce new class of sets namely τ^*-Generalized Locally Closed set, τ^*-Generalized Semi Locally Closed set and functions namely τ^*-glc-continuous function and τ^*-gsl-continuous function in topological spaces and study some of their properties.

Keywords: τ^*-generalized locally closed set; τ^*-generalized semi locally closed set; τ^*-glc-continuous function; τ^*-gsl-continuous function.

AMS Subject Classification: 54A05.

1. Introduction

The purpose of this paper is to introduce and study the concept of new class of sets called τ^*-Generalized Locally Closed set, τ^*-Generalized Semi Locally Closed set and functions called τ^*-glc-continuous function and τ^*-gsl-continuous function in topological spaces and study some of their properties.

Throughout this paper X and Y are topological spaces on which no separation axioms are assumed unless otherwise explicitly stated. For a subset A of a topological space X, $\text{Cl}(A)$, $\text{Cl}^*(A)$, $s\text{Cl}(A)$ and Cl^*_τ denote the closure, closure $*$, semi-closure and τ^*-generalized closure of A respectively.

2. Preliminaries

As we need the following definitions, let us recall them.
Definition 2.1 A subset A of a topological space (X, τ) is called generalized closed [3] (briefly g-closed) in X if $Cl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X. A subset A is called generalized open (briefly g-open) in X if its complement A^c is g-closed.

Definition 2.2 For the subset A of a topological X, the generalized closure operator Cl^* [5] is defined by the intersection of all g-closed sets containing A.

Definition 2.3 For the subset A of a topological X, the topology τ^* [5] is defined by $\tau^* = \{G : Cl^*(GC) = GC\}$.

Definition 2.4 A subset A of a topological space X is called generalized semi closed set (briefly gs-closed) [6] if $sCl(A) \subseteq G$ whenever $A \subseteq G$ and G is open in X. The complement of gs-closed set is called the generalized semi open set (briefly gs-open).

Definition 2.5 A subset A of a topological space X is called τ^*-generalized closed set (briefly τ^*-g-closed) [6] if $Cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is τ^*-open. The complement of τ^*-generalized closed set is called the τ^*-generalized open set (briefly τ^*-g-open).

Definition 2.6 The τ^*-generalized closure operator Cl^*_τ [5] for a subset A of a topological space (X, τ^*) is defined by the intersection of all τ^*-g-closed set containing A. That is

$$Cl^*_\tau(A) = \cap\{G : A \subseteq G \text{ and } G \text{ is } \tau^* - g - \text{closed}\}.$$

Definition 2.7 A topological space (X, τ^*) is called τ^*-Tg space [5] if every τ^*-g-closed set in X is g-closed in X.

Definition 2.8 A subset S of a topological space X is called locally closed [9] (briefly LC-closed) if $S = A \cap B$ where A is open and B is closed in X.

Definition 2.9 A subset S of a topological space X is called generalized locally closed set [4] (briefly GLC) if $S = A \cap B$ where A is g-open and B is g-closed in X.

Definition 2.10 A subset S of a topological space X is called GLC* [4] if $S = A \cap B$ where A is g-open and B is g-closed in X.

Definition 2.11 A subset S of a topological space X is called GLC** [4] if $S = A \cap B$ where A is open and B is g-closed in X.

Definition 2.12 A function $f : X \rightarrow Y$ from a topological space X into a topological space Y is called:

1. LC-continuous [9] if $f^{-1}(V) \in LC(X)$ for each open set V in Y.
2. τ^*-generalized continuous (τ^*-g-continuous) [7] if the inverse image of every g-closed set in Y is τ^*-g-closed in X.
3. LC-irresolute [9] if $f^{-1}(V) \in LC(X)$ for each open set V in $LC(X)$.
4. GLC-continuous [4] if $f^{-1}(V) \in GLC(X)$ for each open set V in Y.
5. GLC-irresolute [4] if $f^{-1}(V) \in GLC(X)$ for each V in $GLC(X)$.
6. GLC* -continuous [4] if $f^{-1}(V) \in GLC^*(X)$ for each V in Y.
7. GLC** -continuous [4] if $f^{-1}(V) \in GLC^{**}(X)$ for each V in Y.
8. GLC* -irresolute [4] if $f^{-1}(V) \in GLC^*(X)$ for each V in $GLC^*(Y)$.
9. GLC** -irresolute [4] if $f^{-1}(V) \in GLC^{**}(X)$ for each V in $GLC^{**}(Y)$.

Remark 2.13 In [6] it has been proved in Theorem 3.2 that every closed set is τ^*-g-closed.

Remark 2.14 In [6] it has been proved in Theorem 3.4 that every g-closed set is τ^*-g-closed.

Notation: $LC(X)$, $GLC(X)$, $GLC^*(X)$ and $GLC^{**}(X)$ denote the class of all locally closed sets, glc sets, glc^* sets and glc^{**} sets respectively in a topological space X.
3. \(\tau^*-\text{Generalized Locally Continuous Maps in Topological Spaces} \)

Using \(g \)-open set and \(g \)-closed set, K. Balachandran, P. Sundaram and H. Maki [4] introduced the concept of generalized locally closed set and generalized locally continuous maps. A. Pushpalatha, S. Eswaran and P. Rajarubi [6] introduced and studied a class of set namely \(\tau^* \)-generalized closed sets. In this section, we introduce a new class of set namely \(\tau^* \)-generalized locally closed set and a function namely \(\tau^*\text{-glc}-\text{continuous function in a topological space and study some of their properties.} \)

Notation: \(\tau^*-\text{GLC}(X) \) denotes the class of all \(\tau^*\text{-glc} \) sets in a topological space \(X \).

Definition 3.1 A subset \(S \) of \(X \) is called \(\tau^* \)-generalized locally closed set (briefly \(\tau^*\text{-glc} \) set) if \(S = A \cap B \) where \(A \) is a \(\tau^*\text{-}g\)-open set and \(B \) is a \(\tau^*\text{-}g\)-closed set in \(X \).

Theorem 3.2 If a subset \(S \) of \(X \) is locally closed, then it is \(\tau^*\text{-glc} \) but not conversely.

Proof Since \(S \) is locally closed, we can write \(S = A \cap B \), where \(A \) is \(g \)-open and \(B \) is \(g \)-closed in \(X \). By Remark 2.14, \(A \) is \(\tau^*\text{-}g\)-open and \(B \) is \(\tau^*\text{-}g\)-closed in \(X \). Hence \(S \) is \(\tau^*\text{-glc} \). \(\blacksquare \)

The converse of the theorem need not be true as seen from the following example.

Example 3.3 Let \(X = \{a, b, c\} \), \(\tau = \{X, \phi, \{c\}\} \). Then \(S = \{a\} \) is \(\tau^*\text{-glc} \). But it is not locally closed.

Theorem 3.4 A subset \(S \) of \(X \) is GLC if and only if it is \(\tau^*\text{-glc} \), provided \(X \) is a \(\tau^*\text{-Tg-space} \).

Proof Assume that \(S \) is GLC. Let \(S = A \cap B \) where \(A \) is \(g \)-open and \(B \) is \(g \)-closed in \(X \). By Remark 2.14, \(A \) is \(\tau^*\text{-}g\)-open and \(B \) is \(\tau^*\text{-}g\)-closed in \(X \). Thus, \(S \) is \(\tau^*\text{-glc} \). Conversely assume that \(S \) is \(\tau^*\text{-glc} \). Let \(S = A \cap B \) where \(A \) is \(\tau^*\text{-}g\)-open and \(B \) is \(\tau^*\text{-}g\)-closed in \(X \). Since \(X \) is a \(\tau^*\text{-Tg-space} \), \(A \) is \(g \)-open and \(B \) is \(g \)-closed in \(X \). Hence \(S \) is GLC. \(\blacksquare \)

Theorem 3.5 If \(A \) is \(\tau^*\text{-glc} \) in \(X \) and \(B \) is \(\tau^*\text{-}g\)-open in \(X \) then \(A \cap B \) is \(\tau^*\text{-glc} \) in \(X \).

Proof Since \(A \) is \(\tau^*\text{-glc} \), we have \(A = P \cap Q \), where \(P \) is \(\tau^*\text{-}g\)-open and \(Q \) is \(\tau^*\text{-}g\)-closed in \(X \). Now

\[
A \cap B = (P \cap Q) \cap B = P \cap (Q \cap B) = P \cap (B \cap Q) = (P \cap B) \cap Q.
\]

Since \(P \) and \(B \) are \(\tau^*\text{-}g\)-open, \(P \cap B \) is also \(\tau^*\text{-}g\)-open and \(Q \) is \(\tau^*\text{-}g\)-closed. Hence \(A \cap B \) is \(\tau^*\text{-glc} \) in \(X \).

Definition 3.6 A subset \(S \) of a topological space \(X \) is called \(\tau^*\text{-glc}^* \) if \(S = P \cap Q \) where \(P \) is \(\tau^*\text{-}g\)-open and \(Q \) is \(g \)-closed in \(X \).

Definition 3.7 A subset \(S \) of a topological space \(X \) is called \(\tau^*\text{-glc}^{**} \) if \(S = P \cap Q \) where \(P \) is \(g \)-open and \(Q \) is \(\tau^*\text{-}g\)-closed in \(X \).

Theorem 3.8 If \(A \) is \(\tau^*\text{-glc}^* \) in \(X \) and \(B \) is a \(\tau^*\text{-}g\)-open set in \(X \) then \(A \cap B \) is \(\tau^*\text{-glc}^* \) in \(X \).

Proof Since \(A \) is \(\tau^*\text{-glc}^* \), there exists a \(\tau^*\text{-}g\)-open set \(P \) and a \(g \)-closed set \(Q \) in \(X \) such that \(A = P \cap Q \). Now

\[
A \cap B = (P \cap Q) \cap B = (P \cap B) \cap Q.
\]

Since \(P \) and \(B \) are \(\tau^*\text{-}g\)-open, \(P \cap B \) is also \(\tau^*\text{-}g\)-open and \(Q \) is \(g \)-closed. Therefore \(A \cap B \) is \(\tau^*\text{-glc}^* \). \(\blacksquare \)

Theorem 3.9 If \(A \) is \(\tau^*\text{-glc}^{**} \) in \(X \) and \(B \) is a \(g \)-closed set in \(X \) then \(A \cap B \) is \(\tau^*\text{-glc}^{**} \) in \(X \).

Proof Since \(A \) is \(\tau^*\text{-glc}^{**} \), we have \(A = P \cap Q \), where \(P \) is a \(g \)-open set and \(Q \) is a \(\tau^*\text{-}g\)-closed set in \(X \). Now

\[
A \cap B = (P \cap Q) \cap B = P \cap (Q \cap B).
\]
Given B is g-closed. So by Remark 2.14, B is τ^*-g- closed. Therefore $Q \cap B$ is also τ^*-g- closed. Hence $A \cap B$ is τ^*-glc^*. ■

Theorem 3.10 A subset A of a topological space X is τ^*-glc^* if and only if there exists a τ^*-g- open set P such that $A = P \cap \text{cl}^* (A)$.

Proof Let A be a τ^*-glc^*. Then there exists a τ^*-g- open set P and a g- closed set Q such that $A = P \cap Q$. Since $A \subset Q$ and Q is g- closed, we have $A \subset \text{Cl}^*(A) \subset Q$. Also, $A \subset P$ and $A \subset \text{Cl}^*(A)$ together implies $A \subset P \cap \text{Cl}^*(A)$. On the other hand, take $x \in P \cap \text{Cl}^*(A)$. Then $x \in P$ and $x \in \text{Cl}^*(A) \subset Q$. So, $x \in P \cap Q = A$. Hence $P \cap \text{Cl}^*(A) \subset A$. Therefore $A = P \cap \text{Cl}^*(A)$.

Conversely assume that $A = P \cap \text{Cl}^*(A)$, where P is τ^*-g- open and A is a subset of a topological space X. Here $\text{Cl}^*(A)$ is a g-closed set. Therefore A is τ^*-glc^*. ■

Theorem 3.11 If a subset A of a topological space X is τ^*-glc^*, then there exists a g-open set P such that $A = P \cap \text{Cl}^*(A)$.

Proof Let A be a τ^*-glc^*. By definition there exists a g-open set P and a τ^*-g-closed set Q such that $A = P \cap Q$. Then, since $A \subset \text{Cl}^*(A) \subset Q$, we have $A \subset P \cap \text{Cl}^*(A)$. Also, if $x \in P \cap \text{Cl}^*(A)$, then $x \in Q$ and $x \in P$. Therefore $x \in P \cap Q = A$. Hence $P \cap \text{Cl}^*(A) \subset A$. Thus we have $A = P \cap \text{Cl}^*(A)$.

Theorem 3.12 If A and B are τ^*-glc^* in a topological space X, then $A \cap B$ is τ^*-glc^* in X.

Proof Since A and B are τ^*-glc^* sets, by Theorem 3.10, there exists τ^*-g-open sets P and Q such that $A = P \cap \text{Cl}^*(A)$ and $B = Q \cap \text{Cl}^*(B)$. Therefore

$$A \cap B = (P \cap Q) \cap (\text{Cl}^*(A) \cap \text{Cl}^*(B)).$$

Since $P \cap Q$ is τ^*-g-open and $\text{Cl}^*(A) \cap \text{Cl}^*(B)$ is g-closed, we have $A \cap B$ is τ^*-glc^*. ■

Definition 3.13 A function $f : X \to Y$ from a topological space X into to a topological space Y is called:

1. τ^*-glc-continuous if for each g-open set V in Y, $f^{-1}(V)$ is $\tau^*-GLC(X)$.
2. τ^*-glc-irresolute if for each $V \in \tau^*-GLC(Y)$, $f^{-1}(V) \in \tau^*-GLC(X)$.

Theorem 3.14 If a function $f : X \to Y$ is LC-continuous, then it is τ^*-glc-continuous but not conversely.

Proof Assume that f is LC-continuous. Let V be an open set in Y. Then $f^{-1}(V)$ is locally closed in X. But by Theorem 3.2, every locally closed set is τ^*-glc. Thus $f^{-1}(V)$ is τ^*-glc in X. Therefore f is τ^*-glc-continuous. ■

The converse of the above theorem need not be true as seen from the following example.

Example 3.15 Let $X = Y = \{a, b, c\}$, $\tau = \{X, \emptyset, \{c\}, \{a, b\}\}$ and $\sigma = \{Y, \emptyset, \{b\}, \{a, b\}\}$. Let $f : X \to Y$ be an identity map. Clearly f is τ^*-glc-continuous. But it is not LC-continuous since for the open set $V = \{b\}$ in Y, $f^{-1}(V)$ is not locally closed in X.

Theorem 3.16 If a function $f : X \to Y$ from a topological space X into a topological space Y is GLC-continuous then it is τ^*-glc-continuous.

Proof Let $f : X \to Y$ be glc-continuous. Let V be an open set in Y. Then $f^{-1}(V)$ is glc set in X. Therefore by definition $f^{-1}(V) = A \cap B$, where A is g-open and B is g-closed in X. Since every open set is g-open, V is g-open in Y. Also by Remark 2.14, A and B are τ^*-g- open and τ^*-g- closed respectively. Hence f is τ^*-glc-continuous. ■

Theorem 3.17 If a function $f : X \to Y$ from a topological space X into a topological space Y is τ^*-glc-irresolute, then it is τ^*-glc-continuous.
Proof Let $f : X \to Y$ be $\tau^*-\text{glc}$-irresolute. Let V be a g-open set in Y. Since g-open implies $\tau^*-\text{glc}$, $V \in \tau^*\text{GLC}(Y)$. Also, since f is $\tau^*-\text{glc}$-irresolute, $f^{-1}(V) \in \tau^*\text{GLC}(X)$. Therefore f is $\tau^*-\text{glc}$-continuous.

Theorem 3.18 If a function $f : X \to Y$ from a topological space X into a topological space Y is $\tau^*-\text{glc}$-continuous and A is a τ^*-g-open subset of X, then the restriction $f/A : A \to Y$ is $\tau^*-\text{glc}$-continuous.

Proof Let V be a g-open set in Y. Since f is $\tau^*-\text{glc}$-continuous, $f^{-1}(V)$ is $\tau^*\text{glc}$ in X. We have $f^{-1}(V) = P \cap Q$, where P is τ^*-g-open and Q is τ^*-g-closed in X. Now

$$(f/A)^{-1}(V) = f^{-1}(V) \cap A = (P \cap A) \cap Q.$$

But $P \cap A$ is τ^*-g-open in X and therefore the restriction f/A is τ^*-glc-continuous. \[\blacksquare\]

Theorem 3.19

1. Let $f : X \to Y$ from a topological space X into a topological space Y is $\tau^*\text{glc}$-continuous and B be a g-open subset of Y containing $f(X)$. Then $f : X \to B$ is $\tau^*-\text{glc}$-continuous.
2. If $f : X \to Y$ and $g : Y \to Z$ are both $\tau^*-\text{glc}$-irresolute, then the composition $g \circ f : X \to Z$ is $\tau^*-\text{glc}$-irresolute.
3. If $f : X \to Y$ is $\tau^*-\text{glc}$-continuous and $g : Y \to Z$ is τ^*g-continuous, then the composition $g \circ f : X \to Z$ is $\tau^*\text{glc}$-continuous.

Proof (1) Let V be a g-open set in B. Since B is a g-open subset of Y, the set V is g-open in Y. And since f is $\tau^*\text{glc}$-continuous, $f^{-1}(V)$ is $\tau^*\text{glc}$ in X. Therefore f is $\tau^*-\text{glc}$-continuous be a $\tau^*\text{glc}$ in Z. Since g is $\tau^*-\text{glc}$-irresolute, $g^{-1}(V)$ is $\tau^*\text{glc}$ in Y. Also, f is $\tau^*\text{glc}$-irresolute. So, $f^{-1}(g^{-1}(V))$ is $\tau^*\text{glc}$ in X. But $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ and so $g \circ f$ is $\tau^*\text{glc}$-irresolute.

(2) Let V be a g-open set in Z. Since g is τ^*g-continuous, $g^{-1}(V)$ is τ^*g-open in Y. Also since $\tau^*\text{glc}$-continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ and so $g \circ f$ is $\tau^*\text{glc}$-continuous. \[\blacksquare\]

Remark 3.20 From the above discussion, we obtain the following implication.

$\text{LC-continuous} \Rightarrow \text{GLC-continuous} \Rightarrow \tau^*-\text{glc-continuous} \Rightarrow \tau^*-\text{glc-irresolute}$

A \rightarrow B means A implies B, A $\not\rightarrow$ B means A does not imply B.

4. τ^*-Generalized Semi Locally Closed sets and $\tau^*-\text{gsl}$-continuous Maps in Topological Spaces

In this section we introduce τ^*-generalized semi locally closed set, $\tau^*-\text{gsl}$-continuous map and $\tau^*-\text{gsl}$-irresolute map and study some of their properties and relations with other maps.

Definition 4.1 A subset A of X is called τ^*-generalized semi locally closed set (briefly $\tau^*-\text{gsl}$-closed) if $A = P \cap Q$, where P is a gs-open set and Q is a gs-closed in X.

Theorem 4.2 If a subset S of X is locally closed in X then it is $\tau^*\text{gsl}$-closed in X but not conversely.

Proof Assume that S is locally closed in X. Then $S = A \cap B$ where A is open and B is closed in X. Since open set implies gs-open, we have A is gs-open and B is gs-closed in X. Therefore S is $\tau^*\text{gsl}$-closed in X. \[\blacksquare\]
The converse of the above theorem need not be true as seen from the following example.

Example 4.3 Let \(X = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{b, c\}\} \) and \(S = \{a, b\} \). Then \(S \) is not locally closed in \(X \) since it cannot be written as the intersection of an open set and a closed set in \(X \). But \(S \) is both \(gs \)-open and \(gs \)-closed in \(X \). Hence \(S \) is \(\tau^* \)-gsl-closed.

Definition 4.4 A function \(f : X \to Y \) is said to be \(\tau^* \)-gsl-continuous if the inverse image of every \(g \)-open set in \(Y \) is \(\tau^* \)-gsl-closed in \(X \).

Definition 4.5 A function \(f : X \to Y \) is said to be \(\tau^* \)-gsl-irresolute if the inverse image of every \(\tau^* \)-gsl-closed set in \(Y \) is \(\tau^* \)-gsl-closed in \(X \).

Theorem 4.6 If a function \(f : X \to Y \) is LC-continuous, then it is \(\tau^* \)-gsl-continuous but not conversely.

Proof Assume that \(f : X \to Y \) is LC-continuous. Then by definition, \(f^{-1}(V) \) is locally closed in \(X \), where \(V \) is open in \(Y \). Hence \(f^{-1}(V) = P \cap Q \), where \(P \) is open and \(Q \) is closed in \(X \). Since open \(\implies \) \(gs \)-open, we have \(P \) is \(gs \)-open and \(Q \) is \(gs \)-closed in \(X \). So \(f^{-1}(V) \) is \(\tau^* \)-gsl-closed in \(X \). Therefore \(f \) is \(\tau^* \)-gsl-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 4.7 Let \(X = Y = \{a, b, c\} \), \(\tau = \{X, \phi, \{c\}\} \), \(\sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{b, c\}\} \). Let \(f : X \to Y \) be an identity function. Then clearly \(f \) is \(\tau^* \)-gsl-continuous. But it is not LC-continuous since for the open set \(V = \{b, c\} \) in \(Y \), \(f^{-1}(V) = \{b, c\} \) is not locally closed in \(X \).

Theorem 4.8 If a function \(f : X \to Y \) is GLC-continuous, then it is \(\tau^* \)-gsl-continuous.

Proof Let \(f : X \to Y \) be glc-continuous. Let \(V \) be an open set in \(Y \). Since \(f \) is glc-continuous, \(f^{-1}(V) \) is glc in \(X \). Thus \(f^{-1}(V) \) can be written as \(P \cap Q \), where \(P \) is \(g \)-open and \(Q \) is \(g \)-closed. Since open \(\implies \) \(g \)-open \(\implies \) \(gs \)-open, \(P \) is \(gs \)-open and \(Q \) is \(gs \)-closed. Hence \(f^{-1}(V) \) is \(\tau^* \)-gsl-closed in \(X \). Therefore \(f \) is \(\tau^* \)-gsl-continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 4.10 Let \(X = Y = \{a, b, c\} \), \(\tau = \{X, \phi, \{a, c\}\} \), \(\sigma = \{Y, \phi, \{a\}, \{a, b\}, \{a, c\}\} \). Let \(f : X \to Y \) be an identity function. Clearly \(f \) is \(\tau^* \)-gsl-irresolute. But it is not LC-continuous, because for the open set \(V = \{a\} \) in \(Y \), \(f^{-1}(V) = \{a\} \) is not locally closed in \(X \).

Remark 4.11 From the above discussion, we obtain the following implication.

\[
\begin{array}{c}
\text{LC-continuous} \\
\downarrow \\
\tau^* \text{-gsl-continuous} \\
\downarrow \\
\tau^* \text{-gsl-irresolute} \\
\end{array}
\]

\[
A \rightarrow B \text{ means } A \implies B, \ A \not\rightarrow B \text{ means } A \not\implies B.
\]
References