On πge-closed sets and related topics

Burcu Sümbül Ayhan, Murad Özkoc

aMuğla Sıtki Koçman University, Faculty of Science, Department of Mathematics, 48000 Menteşe, Muğla, Turkey.

Abstract

The aim of this paper is to introduce and investigate πge-continuous functions and πge-irresolute functions via πge-closed sets which are defined by us. The notion of πge-continuity is a weaker than ge-continuity introduced by Ayhan and Özkoc [3]. We obtain some properties about πge-closed sets and πge-continuous functions and πge-irresolute functions and πge-compactness.

Keywords: πge-closed, πge-continuity, πge-irresoluteness, πge-compactness.

2010 MSC: 54C08, 54C10, 54D10, 54D30.

1. Introduction

Continuity on topological spaces, as significant and fundamental subject in the study of topology, has been researched by several mathematicians. Many investigations related to generalized closed sets have been published various forms of generalized continuity types have been introduced. The study of generalized closed sets in a topological space was initiated by Levine [12] in 1970. Next, ge-closed sets and ge-continuous functions were defined and studied by Ayhan and Özkoc [3] in 2014. In 1968, Zaitsev [22] defined the concept of π-closed sets. Later Dontchev and Noiri [5] introduced the notion of πg-closed sets.

2. Preliminaries

Throughout the present paper, X and Y represent topological spaces. For a subset A of a space X, $cl(A)$ and $int(A)$ denote the closure of A and the interior of A, respectively. The family of all closed sets of X is denoted $C(X)$. A subset A of a space (X, τ) is called regular open [20] (resp. regular closed) if $A = int(cl(A))$ (resp. $A = cl(int(A))$). The family of all regular open (resp. regular closed) sets of X will be denoted by $RO(X)$ (resp. $RC(X)$). The finite union of regular open sets is called π-open [22]. The complement of a π-open set is called π-closed. The family of all π-open (resp. π-closed) sets of X will be denoted by $\pi O(X)$ (resp. $\pi C(X)$). A subset A is said to be δ-open [21] if for each $x \in A$ there exists a regular open set B such that $x \in B \subset A$. A point x of X is called a δ-cluster point of A if $A \cap int(cl(U)) \neq \emptyset$ for each open set U containing x. The set of all δ-cluster points of A is called the δ-closure of A and is denoted by $cl_\delta(A)$. The set $\{x|(\exists U \in RO(X)(x \in U \subset A))\}$ is called the δ-interior of A and is denoted by $int_\delta(A)$.

Received: 10 November 2015 Accepted: 31 December 2015

http://dx.doi.org/10.20454/jast.2016.1021

2090-8288 ©2016 Modern Science Publishers. All rights reserved.
Definition 2.1. A subset A of a space X is called:

1. α-closed [16] if $\text{cl}(\text{int}(\pi(A))) \subset A$,
2. preclosed [15] if $\text{cl}(\text{int}(A)) \subset A$,
3. b-closed [1] if $\text{cl}(\pi(A)) \cap \text{int}(\pi(A)) \subset A$,
4. e-closed [8] if $\text{cl}(\text{int}_b(A)) \cap \text{int}(\text{cl}_b(A)) \subset A$.

The intersection of all e-closed sets containing A is called the e-closure of A and is denoted by $e\text{-cl}(A)$. The union of all e-open sets contained in A is called the e-interior of A and is denoted by $e\text{-int}(A)$. The family of all e-closed (resp. e-open) subsets of X is denoted by $eC(X)$ (resp. $eO(X)$).

Definition 2.2. A subset A of a space X is called:

1. generalized closed [12] (br. g-closed) if $\text{cl}(A) \subset U$ whenever $A \subset U$ and U is open,
2. π-generalized closed [5] (br. πg-closed) if $\text{cl}(A) \subset U$ whenever $A \subset U$ and U is π-open,
3. π-generalized b-closed [19] (br. πgb-closed) if $\text{cl}(A) \subset U$ whenever $A \subset U$ and U is π-open,
4. α-generalized closed [13] (br. ag-closed) if $\text{acl}(A) \subset U$ whenever $A \subset U$ and U is open,
5. generalized preclosed [14] (br. gp-closed) if $\text{pcl}(A) \subset U$ whenever $A \subset U$ and U is open,
6. generalized b-closed [17] (br. gb-closed) if $\text{bcl}(A) \subset U$ whenever $A \subset U$ and U is open,
7. generalized e-closed [3] (br. ge-closed) if $e\text{-cl}(A) \subset U$ whenever $A \subset U$ and U is open.

Definition 2.3. A function $f : X \to Y$ is called:

1. b-continuous [9] if $f^{-1}[V]$ is b-closed in X for every closed set V of Y,
2. π-generalized b-continuous [17] (br. πgb-continuous) if $f^{-1}[V]$ is gb-closed in X for every closed set V of Y,
3. π-generalized b-continuous [19] (br. πgb-continuous) if $f^{-1}[V]$ is gb-closed in X for every closed set V of Y,
4. precontinuous [15] if $f^{-1}[V]$ is preclosed in X for every closed set V of Y,
5. generalized precontinuous [2] (br. gp-continuous) if $f^{-1}[V]$ is gp-closed in X for every closed set V of Y,
6. e-continuous [8] if $f^{-1}[V]$ is e-closed in X for every closed set V of Y,
7. generalized e-continuous [3] (br. ge-continuous) if $f^{-1}[V]$ is ge-closed in X for every closed set V of Y,
8. e-irresolute [7] if $f^{-1}[V]$ is e-closed in X for every e-closed set V of Y,

The following basic properties of e-closure are useful in the sequel:

Lemma 2.4. [8] For any subsets A and B of a space X, the following hold:

1. $e\text{-cl}(A) = A \cup [\text{int}(\text{cl}_b(A)) \cap \text{cl}(\text{int}_b(A))]$,
2. $e\text{-cl}(X \setminus A) = X \setminus e\text{-int}(A)$,
3. $x \in e\text{-cl}(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in eO(X, x)$,
4. $A \in eC(X)$ if and only if $A = e\text{-cl}(A)$.

3. πge-closed sets

Definition 3.1. Let X be a topological space. A subset A of X is called π-generalized e-closed set (briefly πge-closed) if $e\text{-cl}(A) \subset U$ whenever $A \subset U$ and U is π-open. The family of all πge-closed subsets of X will be denoted by $\pi geC(X)$.

Theorem 3.2. For a topological space X the followings hold:

1. Every closed set is πge-closed.
2. Every g-closed set is πge-closed.
(3) Every a-closed set is πge-closed.
(4) Every ag-closed set is πge-closed.
(5) Every preclosed set is πge-closed.
(6) Every gp-closed set is πge-closed.
(7) Every e-closed set is πge-closed.
(8) Every ge-closed set is πge-closed.

Proof. Obvious.

Remark 3.3. From the Definition 3.1 and Theorem 3.2 we have the following diagram:

\[
\begin{array}{ccccccc}
\text{closed} & \rightarrow & a\text{-closed} & \rightarrow & \text{preclosed} & \rightarrow & e\text{-closed} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\text{g\text{-closed}} & \rightarrow & ag\text{-closed} & \rightarrow & gp\text{-closed} & \rightarrow & ge\text{-closed} & \rightarrow & \pi ge\text{-closed} \\
& & & \downarrow & & \\
& & & gb\text{-closed} & \rightarrow & \pi gb\text{-closed}
\end{array}
\]

However, none of these implications is reversible as shown by the following examples.

Example 3.4. $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, [a], [c], [d], [a, c, d], [b, c, d]\}$. Then the set $\{a, c, d\}$ is πge-closed but it is not ge-closed.

Example 3.5. $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, [a], [c], [a, c], [c, d], [a, c, d]\}$. Then the set $\{a, d\}$ is πgb-closed but it is not πge-closed.

Theorem 3.6. Let X be a topological space. If A is π-open and πge-closed, then A is e-closed.

Proof. Let A be π-open and πge-closed. Let $A \subseteq B$ where A is π-open. Since A is πge-closed, $e\text{-}\text{cl}(A) \subseteq A$. Then $A = e\text{-}\text{cl}(A)$. Hence is e-closed.

Theorem 3.7. Let A be πge-closed in X. Then $e\text{-}\text{cl}(A) \setminus A$ does not contain any non-empty π-closed set.

Proof. Let F be π-closed set such that $F \subseteq e\text{-}\text{cl}(A) \setminus A$. Then $F \subseteq X \setminus A$ implies $A \subseteq X \setminus F$. Therefore $e\text{-}\text{cl}(A) \subseteq X \setminus F$. That is $F \subseteq X \setminus e\text{-}\text{cl}(A)$. Hence $F \subseteq e\text{-}\text{cl}(A) \cap (X \setminus e\text{-}\text{cl}(A))$. This shows that $F = \emptyset$ which is a contradiction.

Corollary 3.8. Let A be πge-closed in X. Then A is e-closed iff $e\text{-}\text{cl}(A) \setminus A$ is π-closed.

Proof. Necessity: Let A be e-closed. Then $e\text{-}\text{cl}(A) = A$. This implies $e\text{-}\text{cl}(A) \setminus A = \emptyset$ which is π-closed.

Sufficiency: Assume $e\text{-}\text{cl}(A) \setminus A$ is π-closed and A is πge-closed. By Theorem 3.7, $e\text{-}\text{cl}(A) \setminus A = \emptyset$. Hence $e\text{-}\text{cl}(A) = A$.

Remark 3.9. Let X be a topological space. Finite intersection of πge-closed sets need not be πge-closed.

Example 3.10. Consider $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, [a], [b], [a, b], [a, b, c], [a, b, d]\}$. Let $A = \{a, b, c\}$, $B = \{a, b, d\}$. Here A and B are πge-closed but $A \cap B = \{a, b\}$ is not πge-closed.

Remark 3.11. Let X be a topological space. Finite union of πge-closed sets need not be πge-closed.

Example 3.12. Consider $X = \{a, b, c\}$, $\tau = \{\emptyset, X, [a], [b], [a, b]\}$. Let $A = \{a\}$, $B = \{b\}$. Here A and B are πge-closed but $A \cup B = \{a, b\}$ is not πge-closed.

Lemma 3.13. [3] If $D(A) = D_e(A)$, then we have $\text{cl}(A) = e\text{-}\text{cl}(A)$.
Theorem 3.14. Let A and B be πge-closed in X such that $D(A) \subset D_1(A)$ and $D(B) \subset D_2(B)$. Then $A \cup B$ is πge-closed.

Proof. Let U be an π-open set such that $A \cup B \subset U$. Then since A and B be πge-closed sets we have $e-cl(A) \subset U$ and $e-cl(B) \subset U$. Since $D(A) \subset D_1(A)$, $D(B) \subset D_2(B)$. By Lemma 3.13, $cl(A) = e-cl(A)$ and $cl(B) = e-cl(B)$. Thus $e-cl(A \cup B) \subset cl(A \cup B) = cl(A) \cup cl(B) = e-cl(A) \cup e-cl(B) \subset U$, which implies that $A \cup B$ is πge-closed.

Theorem 3.15. Let X be a topological space. If A is πge-closed set and B is any such that $A \subset B \subset e-cl(A)$, then B is πge-closed set.

Proof. Let $B \subset U$ and U is π-open set. Given $A \subset B$. Then $A \subset U$. Since A is πge-closed, $A \subset U$ implies $e-cl(A) \subset U$. By assumption it follows that $e-cl(B) \subset e-cl(A) \subset U$. Hence B is a πge-closed set.

4. πge-open Sets

Definition 4.1. Let X be a topological space. A subset A of X is called π-generalized e-open set (briefly πge-open) if and only if its complement is πge-closed. The family of all πge-open subsets of X will be denoted by $\pi geO(X)$.

Theorem 4.2. If $A \subset X$ is πge-open iff $F \subset e-int(A)$ whenever F is π-closed and $F \subset A$.

Proof. Necessity: Let A be a πge-open. Let F be π-closed and $F \subset A$. Then $X \setminus A \subset X \setminus F$ where $X \setminus F$ is π-open. By assumption, $e-cl(X \setminus A) \subset X \setminus F$. Then $X \setminus e-int(A) \subset X \setminus F$. Thus $F \subset e-int(A)$.

Sufficiency: Suppose F is π-closed and $F \subset A$ such that $F \subset e-int(A)$. Let $X \setminus A \subset U$ where U is π-open. Then $X \setminus U \subset A$ where $X \setminus U$ is π-closed. By hypothesis, $X \setminus U \subset e-int(A)$ and so $X \setminus e-int(A) \subset U$. Hence $e-cl(X \setminus A) \subset U$. Thus $X \setminus A$ is πge-closed and A is πge-open.

Theorem 4.3. Let X be a topological space and $A, B \subset X$. If $e-int(A) \subset B \subset A$ and A is πge-open, then B is πge-open.

Proof. Let $e-int(A) \subset B \subset A$. Thus $X \setminus A \subset X \setminus B \subset e-cl(X \setminus A)$. Since $X \setminus A$ is πge-closed. By Theorem 3.15, $(X \setminus A) \subset (X \setminus B) \subset e-cl(X \setminus A)$ implies $X \setminus B$ is πge-closed.

Lemma 4.4. Let X be a topological space and $A \subset X$. $e-int(e-cl(A) \setminus A) = \emptyset$.

Theorem 4.5. Let (X, τ) be a topological space. If $A \subset X$ is πge-closed, then $e-cl(A) \setminus A$ is πge-open.

Proof. Assume A is πge-closed. Let F be π-closed set and $F \subset e-cl(A) \setminus A$. By Theorem 3.7, $F = \emptyset$. By Lemma 4.4, $e-int(e-cl(A) \setminus A) = \emptyset$. Thus $F \subset e-int(e-cl(A) \setminus A)$. Hence $e-cl(A) \setminus A$ is πge-open.

Definition 4.6. A topological space X is called a $\pi ge-T_{1/2}$ space if every πge-closed set is e-closed.

Theorem 4.7. Let X be a topological space.

1. $eO(X) \subset \pi geO(X)$,
2. A space X is $\pi ge-T_{1/2}$ iff $eO(X) = \pi geO(X)$.

Proof. (1) Let A be e-open, then $X \setminus A$ is e-closed so $X \setminus A$ is πge-closed. Thus A is πge-open. Hence $eO(X) \subset \pi geO(X)$.

(2) Necessity: Let (X, τ) be $\pi ge-T_{1/2}$ space. Let A be πge-open. Then $X \setminus A$ is πge-closed. By hypothesis, $X \setminus A$ is e-closed. Thus A is e-open. Therefore $eO(X) = \pi geO(X)$. Sufficiency: Let $eO(X) = \pi geO(X)$. Let A be πge-closed. Then $X \setminus A$ is πge-open. $X \setminus A$ is e-open. Hence A is e-closed. This implies (X, τ) is $\pi ge-T_{1/2}$ space.
Lemma 4.8. Let A be a subset of X and $x \in X$. Then $x \in e\text{-cl}(A)$ iff $V \cap \{x\} \neq \emptyset$ for every e-open set V containing x.

Theorem 4.9. For a topological space X the following are equivalent:

(1) X is πge-$T_{1/2}$ space.
(2) Every singleton set is either π-closed or e-open.

Proof. (1) \Rightarrow (2): Let X be a πge-$T_{1/2}$ space. Let $x \in X$ and assuming that $\{x\}$ is not π-closed. Then clearly $X \setminus \{x\}$ is not π-open. Hence $X \setminus \{x\}$ is trivially a πge-closed. Since X is πge-$T_{1/2}$ space, $X \setminus \{x\}$ is e-closed. Therefore $\{x\}$ is e-open.

Case I: Assume every singleton of X is either π-closed or e-open. Let A be a πge-closed set. Let $[x] \in e\text{-cl}(A)$. Let $x \in X \setminus A$. By Theorem 3.7, $[x] \in A$. Hence $e\text{-cl}(A) \subseteq A$.

Case II: Let $[x]$ be e-open. Since $[x] \in e\text{-cl}(A)$, we have $A \cap [x] \neq \emptyset$ implies $[x] \in A$. Therefore $e\text{-cl}(A) \subseteq A$.

5. πge-continuous and πge-irresolute Functions

Definition 5.1. A function $f : X \rightarrow Y$ is called πge-continuous if $f^{-1}[V]$ is πge-closed in X for every closed set V of Y.

Definition 5.2. A function $f : X \rightarrow Y$ is called πge-irresolute if $f^{-1}[V]$ is πge-closed in X for every πge-closed set V of Y.

Proposition 5.3. Every πge-irresolute functions is πge-continuous.

Remark 5.4. From Definition 5.1, Definition 5.2 and Proposition 5.3 we have following the diagram:

\[
\begin{array}{cccc}
\text{b-continuous} & \rightarrow & \text{gb-continuous} & \rightarrow \\
\uparrow & \searrow & \uparrow & \searrow \\
\text{g-continuous} & \leftarrow & \text{continuous} & \rightarrow & \text{precontinuous} & \rightarrow & \text{gp-continuous} \\
\downarrow & \nearrow & \downarrow & \nearrow & \downarrow & \nearrow & \downarrow \\
\text{e-continuous} & \rightarrow & \text{ge-continuous} & \leftarrow & \text{ge-irresolute} \\
\uparrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\text{e-irresolute} & \rightarrow & \text{pg-continuous} & \leftarrow & \pi ge-irresolute \\
\end{array}
\]

The converses of these implications are not true in general as shown in the following examples.

Example 5.5. $X = \{a, b, c\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$, $\sigma = \{\emptyset, X, \{a\}\}$. Define $f : (X, \tau) \rightarrow (X, \sigma)$ by identity function. Then f is πge-continuous but it is not πge-irresolute.

Example 5.6. $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{c\}, \{d\}, \{a, c, d\}, \{b, c, d\}\}$, $\sigma = \{\emptyset, X, \{b\}\}$. Define $f : (X, \tau) \rightarrow (X, \sigma)$ by identity function. Then f is πge-continuous but it is not ge-continuous.

Example 5.7. $X = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, X, \{c\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$, $\sigma = \{\emptyset, X, \{b, c, e\}\}$. Define $f : (X, \tau) \rightarrow (X, \sigma)$ by identity function. Then f is πgb-continuous but it is not πge-continuous.

Remark 5.8. The composition of two πge-continuous functions need not be πge-continuous.

Example 5.9. Let $X = \{x, y, z, w\}$, $\tau = \{\emptyset, X, \{y\}, \{z\}, \{y, z\}\}$ and $\sigma = \{\emptyset, X, \{x, y, w\}\}$ and $\eta = \{\emptyset, X, \{x, w\}\}$. Define $f : (X, \tau) \rightarrow (X, \sigma)$ by $f = \{(x, x), (y, z), (z, y), (w, w)\}$. Define $g : (X, \sigma) \rightarrow (X, \eta)$ by $g = \{(x, w), (y, y), (z, z), (w, x)\}$. Then f and g are πge-continuous but $g \circ f$ is not πge-continuous.
Theorem 5.10. Let $f : X \to Y$ be a function.

(1) If f is πge-irresolute and X is πge-$T_{1/2}$ space, then f is e-irresolute.

(2) If f is πge-continuous and X is πge-$T_{1/2}$ space, then f is e-continuous.

Proof. (1) Let V be e-closed in Y. Since f is πge-irresolute, $f^{-1}[V]$ is πge-closed in X. Since X is πge-$T_{1/2}$ space, $f^{-1}[V]$ is e-closed in X. Hence f is e-irresolute.

(2) Let V be closed in Y. Since f is πge-continuous, $f^{-1}[V]$ is πge-closed in X. By assumption, it is e-closed. Therefore f is e-continuous.

Definition 5.11. A function $f : X \to Y$ is called π-irresolute if $f^{-1}[U]$ is π-closed in X for each π-closed set U of Y.

Theorem 5.13. Let $f : X \to Y$ be π-irresolute and pre-e-closed map. Then $f[A]$ is πge-closed in Y for every πge-closed set A of X.

Proof. Let A be πge-closed in X. Let $f[A] \subseteq V$ where V is π-open in Y. Then $A \subseteq f^{-1}[V]$ and A is πge-closed in X implies $e-cl(A) \subseteq f^{-1}[V]$. Hence $e-cl(f[A]) \subseteq e-cl(f[e-cl(A)]) = f[e-cl(A)] \subseteq V$. Therefore $f[A]$ is πge-closed in Y.

Definition 5.14. [11] A function $f : X \to Y$ is π-open map if $f[V]$ is π-open set in Y for every π-open set V of X.

Theorem 5.15. If $f : X \to Y$ is e-irresolute and π-open bijection, then f is πge-irresolute.

Proof. Let V be πge-closed in Y. Let $f^{-1}[V] \subseteq U$ where U is π-open in X. Hence $V \subseteq f[U]$ and $f[U]$ is π-open implies $e-cl(V) \subseteq f[U]$. Since f is e-irresolute, $f^{-1}[e-cl(V)]$ is e-closed in X. Hence $e-cl(f^{-1}[V]) \subseteq e-cl(f^{-1}[e-cl(V)]) = f^{-1}[e-cl(V)] \subseteq U$. Therefore $f^{-1}[V]$ is πge-closed and thus f is πge-irresolute.

Theorem 5.16. Let $f : X \to Y$ be pre-e-closed and πge-irresolute surjection. If X is πge-$T_{1/2}$ space, then Y is also a πge-$T_{1/2}$ space.

Proof. Let F be πge-closed set in Y. Since f is πge-irresolute, $f^{-1}[F]$ is πge-closed in X. Since X is πge-$T_{1/2}$ space, $f^{-1}[F]$ is e-closed in X and hence $f[f^{-1}[F]] = F$ is e-closed in Y. This shows that Y is πge-$T_{1/2}$ space.

6. Covering Properties

Definition 6.1. A topological space X is said to be:

(1) nearly compact [18] if every regular open cover of X has a finite subcover.

(2) countably compact [4] if every open countable cover of X has a finite subcover.

(3) nearly countably compact [10] if every countable cover by regular open sets has a finite subcover.

(4) nearly Lindelöf [6] if every cover by regular open sets has a countable subcover.

(5) πge-compact if every πge-open cover of X has a finite subcover.

(6) πge-Lindelöf if every cover by πge-open sets has a countable subcover.

(7) countably πge-compact if every πge-open countable cover of X has a finite subcover.

Corollary 6.2. For a topological space X the followings hold:

(1) If X is πge-Lindelöf, then X is Lindelöf.

(2) If X is πge-compact, then X is compact.
Definition 6.6. A function \(\pi \) is \(\pi \)e-continuous (resp. \(\pi \)e-irresolute) if \(\pi \) is \(\pi \)e-continuous (resp. \(\pi \)e-irresolute).

Theorem 6.3. Every \(\pi \)e-compact subset of a \(\pi \)e-compact space is \(\pi \)e-compact space relative to \(X \).

Proof. Let \(\mathcal{A} \subset \pi \)eO\((X)\) and \(A \subset \bigcup \mathcal{A} \).

\[
\{ (\mathcal{A} \subset \pi \)eO\((X))(A \subset \bigcup \mathcal{A}) : A \in \pi \)eC\((X) \Rightarrow X \setminus A \in \pi \)eO\((X) \} \Rightarrow (X = (\bigcup \mathcal{A}) \cup (\downarrow A))(\mathcal{A}_1 := \mathcal{A} \cup (\downarrow A) \subset \pi \)eO\((X) \} \Rightarrow (\exists \mathcal{A}_1 = \{ A_1, A_2, \ldots, A_n \} \subset \mathcal{A}_1(X = \bigcup \mathcal{A}_1) \} \Rightarrow (\exists \mathcal{A}_1^* = \{ A_1, A_2, \ldots, A_n \} \subset \mathcal{A}_1)(A \subset \bigcup \mathcal{A}_1^*).
\]

Theorem 6.4. Let \(f : X \to Y \) be a function. If \(f \) is \(\pi \)e-continuous surjection (resp. almost \(\pi \)e-continuous) and \(X \) is \(\pi \)e-compact space, then \(Y \) is \(\pi \)e-compact space (resp. nearly \(\pi \)e-compact).

Proof. Let \(B \subset \tau_2 \) and \(Y = \bigcup B \).

\[
\{ (B \subset \tau_2)(Y = \bigcup B) : \mathcal{A} := \{ f^{-1}[B] \mid B \in B \} \Rightarrow (\mathcal{A} \subset \pi \)eO\((X))(X = \bigcup \mathcal{A}) \} \Rightarrow (\exists \mathcal{A}^* \subset \mathcal{A})(|\mathcal{A}^*| < \aleph_0)(X = \bigcup \mathcal{A}^*) \} \Rightarrow (\exists \mathcal{A}^* \subset \mathcal{A})(|\mathcal{A}^*| < \aleph_0)(Y = \bigcup f[B]) \}.
\]

Theorem 6.5. Let \(f : X \to Y \) be a function and \(A \subset X \). If \(f \) is \(\pi \)e-irresolute and \(A \) is \(\pi \)e-compact, then \(f[A] \) is \(\pi \)e-compact.

Proof. Let \(B \subset \pi \)eO\((Y)\) and \(f[A] \subset \bigcup B \).

\[
\{ (B \subset \pi \)eO\((Y))(f[A] \subset \bigcup B) : \mathcal{A} := \{ f^{-1}[B] \mid B \in B \} \Rightarrow (\mathcal{A} \subset \pi \)eO\((X))(A \subset \bigcup \mathcal{A}) \} \Rightarrow (\exists \mathcal{A}^* \subset \mathcal{A})(|\mathcal{A}^*| < \aleph_0)(A \subset \bigcup \mathcal{A}^*) \} \Rightarrow (\exists \mathcal{B}^* \subset \mathcal{B})(|\mathcal{B}^*| < \aleph_0)(f[A] \subset \bigcup \mathcal{B}^*) \}.
\]

Definition 6.6. A function \(f : X \to Y \) is \(\pi \)e-open if \(f[U] \) is \(\pi \)e-closed in \(Y \) for each \(\pi \)e-closed set in \(X \).

Theorem 6.7. Let \(f : X \to Y \) be a function. If \(f \) is \(\pi \)e-open bijection and \(Y \) is \(\pi \)e-compact, then \(X \) is \(\pi \)e-compact.

Proof. Let \(\mathcal{A} \subset \pi \)eO\((X)\) and \(X = \bigcup \mathcal{A} \).

\[
\{ (\mathcal{A} \subset \pi \)eO\((X))(X = \bigcup \mathcal{A}) : \mathcal{B} := \{ f[A] \mid A \in \mathcal{A} \} \Rightarrow (\mathcal{B} \subset \pi \)eO\((Y))(f[X] = Y = f \bigcup \mathcal{A} = \bigcup \mathcal{B}) \} \Rightarrow (\exists \mathcal{B}^* \subset \mathcal{B})(|\mathcal{B}^*| < \aleph_0)(Y = \bigcup \mathcal{B}^*) \} \Rightarrow (\exists \mathcal{B}^* \subset \mathcal{B})(|\mathcal{B}^*| < \aleph_0)(X = f^{-1}[Y] = f^{-1}[\bigcup \mathcal{B}^*]) \} \Rightarrow (\exists \mathcal{A}^* \subset \mathcal{A})(|\mathcal{A}^*| < \aleph_0)(X = \bigcup \mathcal{A}^*) \}.
\]
Definition 6.8. A function $f : X \to Y$ is called almost πge-continuous if $f^{-1}[V]$ is πge-closed in X for every regular closed set V of Y.

Remark 6.9. Every πge-continuous function is almost πge-continuous function. However the converse need not be true as shown by the following example.

Example 6.10. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, [a, b], [d], [a, b, d]\}$, $\sigma = \{X, [a, b], [d]\}$. We define the function $f : (X, \tau) \to (X, \sigma)$ such as $f(a) = a$, $f(b) = b$, $f(c) = d$, $f(d) = c$. f is almost πge-continuous but it is not πge-continuous since for the regular closed set $[a, b, c]$ of (X, σ), we have $f^{-1}[\{a, b, c\}] = \{a, b, d\}$ is not πge-closed in (X, τ).

Theorem 6.11. Let $f : X \to Y$ be an almost πge-continuous surjection.

1. If X is πge-compact, then Y is nearly compact.
2. If X is πge-Lindelöf, then Y is nearly Lindelöf.
3. If X is countably πge-compact, then Y is nearly countably compact.

Proof. Straightforward.

References