Some New Difference Sequence Spaces Defined by A Sequence of Modulus Functions

Kuldip Raj*, Seema Jamwal*

*a School of Mathematics Shri Mata Vaishno Devi University, Katra-182320, J&K, India.
(Received: 31 January 2013; Accepted: 2 April 2013)

Abstract. In this paper, we have constructed some new difference sequence spaces defined by a sequence of modulus functions and study some topological and algebraic properties of these spaces.

1. Introduction and Preliminaries

Let X be a linear metric space. A function $p : X \to \mathbb{R}$ is called paranorm, if:

1. $p(x) \geq 0$ for all $x \in X$.
2. $p(-x) = p(x)$ for all $x \in X$.
3. $p(x + y) \leq p(x) + p(y)$ for all $x, y \in X$.
4. If (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n - x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n - \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which $p(x) = 0$ implies $x = 0$ is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [3, Theorem 10.4.2, pp. 183]).

A modulus function is a function $f : [0, \infty) \to [0, \infty)$ such that:

1. $f(x) = 0$ if and only if $x = 0$.
2. $f(x + y) \leq f(x) + f(y)$, for all $x, y \geq 0$.
3. f is increasing.
4. f is continuous from the right at 0.

It follows that f must be continuous everywhere on $[0, \infty)$. The modulus function may be bounded or unbounded. For example, if we take $f(x) = \frac{1}{x^p}$, then $f(x)$ is bounded. If $f(x) = x^p$, $0 < p < 1$, then the modulus function $f(x)$ is unbounded. Substantially, modulus function has been discussed in [11, 17, 24, 25] and references therein.

Let w, l_∞, c and c_0 denote the spaces of all, bounded, convergent and null sequences $x = (x_k)$ with complex terms respectively.

2010 Mathematics Subject Classification. 40A05, 40C05, 40D05.

Keywords. Sequence space, modulus function, paranormed space.

Email addresses: kuldeepraj68@rediffmail.com (Kuldip Raj), seemajamwal8@gmail.com (Seema Jamwal)
The notion of difference sequence spaces was introduced by Kizmaz [13], who studied the difference sequence spaces \(l_{o}(\Delta), \) \(c(\Delta) \) and \(c_{0}(\Delta). \) The notion was further generalized by Et and Çolak [19] by introducing the spaces \(l_{o}(\Delta^n), \) \(c(\Delta^n) \) and \(c_{0}(\Delta^n). \) Later the concept have been studied by Bektaş et al. [6] and Et et al. [20]. Another type of generalization of the difference sequence spaces is due to Tripathy and Esi [5] who studied the spaces \(l_{o}(\Lambda), \) \(c(\Lambda) \) and \(c_{0}(\Lambda). \) Recently, Esi et al. [2] and Tripathy et al. [4] have introduced a new type of generalized difference operators and unified those as follows:

Let \(v, n \) be non-negative integers, then for \(Z \) a given sequence space, we have

\[
Z(\Delta^n_v) = \{ x = (x_k) \in w : (\Delta^n_v x_k) \in Z \}
\]

for \(Z = c, c_0 \) and \(l_{\infty} \) where \(\Delta^n_v x = (\Delta^n_v x_k) = (\Delta^{n-1}_v x_k - \Delta^{n-1}_v x_{k+v}) \) and \(\Delta^n_0 x_k = x_k \) for all \(k \in \mathbb{N}, \) which is equivalent to the following binomial representation

\[
\Delta^n_v x_k = \sum_{m=0}^{n} (-1)^m \binom{n}{m} x_{k+vm}.
\]

Taking \(v = 1, \) we get the spaces \(l_{o}(\Delta^n), c(\Delta^n) \) and \(c_{0}(\Delta^n) \) studied by Et and Çolak [19]. Taking \(v = n = 1, \) we get the spaces \(l_{o}(\Delta), c(\Delta) \) and \(c_{0}(\Delta) \) introduced and studied by Kizmaz [13]. For more details about sequence spaces (see [17, 18]) and references therein.

Let \(X \) be a sequence space. Then the sequence space \(X(f) \) is defined as

\[
X(f) = \{ x = (x_k) \in w : f(x_k) \in X \}.
\]

Later Kolk [8, 9] gave an extension of \(X(f) \) by considering a sequence of modulus functions \(F = (f_k) \) that is

\[
X(f) = \{ x = (x_k) \in w : f_k(x_k) \in X \}.
\]

In [1] Gaur and Mursaleen defined the following sequence spaces:

\[
l_{o}(F, \Delta) = \{ x = (x_k) \in w : (\Delta x_k) \in l_{o}(F) \},
\]

\[
c_{0}(F, \Lambda) = \{ x = (x_k) \in w : (\Lambda x_k) \in c_{0}(F) \}.
\]

Later Bektaş and Çolak in [7] defined the following sequence spaces:

\[
l_{o}(F, \Delta^n) = \{ x = (x_k) \in w : (\Delta^n x_k) \in l_{o}(F) \},
\]

\[
c_{0}(F, \Delta^n) = \{ x = (x_k) \in w : (\Delta^n x_k) \in c_{0}(F) \}.
\]

Recently V. A. Khan in [23] defined the following sequence spaces:

\[
l_{o}(F, p, \Delta^n) = \{ x = (x_k) \in w : (\Delta^n x_k) \in l_{o}(F, p) \},
\]

\[
c_{0}(F, p, \Delta^n) = \{ x = (x_k) \in w : (\Delta^n x_k) \in c_{0}(F, p) \}.
\]

The notion of statistical convergence was introduced by H. Fast [12]. Later on, it was studied by J. A. Fridy [14, 15] from the sequence space point of view and linked with the summability theory. The notion of \(l \)-convergence is a generalization of the statistical convergence. It was studied at initial stage by Kostyrko et al. [21]. Later on, it was studied by Salat et al. [22], Demirici [16] and many others.

Let \(\mathbb{N} \) be a non empty set. Then a family of sets \(I \subseteq 2^\mathbb{N} \) (Power set of \(\mathbb{N} \)) is said to be an ideal if \(I \) is additive, i.e., \(A, B \in I \Rightarrow A \cup B \in I \) and \(A \in I, B \subset A \Rightarrow B \in I. \) A non empty family of sets \(\mathcal{E}(I) \subseteq 2^\mathbb{N} \) is said to be filter on \(\mathbb{N} \) if and only if \(\emptyset \notin \mathcal{E}(I) \) for \(A, B \in \mathcal{E}(I), \) we have \(A \cap B \in \mathcal{E}(I) \) and for each \(A \in \mathcal{E}(I) \) and \(A \subseteq B \) implies \(B \in \mathcal{E}(I). \)

An ideal \(I \subseteq 2^\mathbb{N} \) is called non trivial if \(I \neq 2^\mathbb{N}. \) A non trivial ideal \(I \subseteq 2^\mathbb{N} \) is called admissible if \(\{x : x \in \mathbb{N} \} \subseteq I. \) A non-trivial ideal is maximal if there cannot exist any non trivial ideal \(J \neq I \) containing \(I \) as a subset. For each ideal \(I, \) there exist a filter \(\mathcal{E}(I) \) corresponding to \(I, \) i.e., \(\mathcal{E}(I) = \{ K \subseteq N : K^c \in I \}, \) where \(K^c = N \setminus K. \)
Definition 1.2. A sequence \((x_k) \in w\) is said to be \(I\)-convergent to a number \(L\) if for every \(\epsilon > 0\), the set \(\{k \in \mathbb{N} : |x_k - L| \geq \epsilon\} \in I\). In this case we write \(I - \lim x_k = L\).

Definition 1.3. A sequence \((x_k) \in w\) is said to be \(I\)-null if \(L = 0\). In this case we write \(I - \lim x_k = 0\).

Definition 1.4. A sequence \((x_k) \in w\) is said to be \(I\)-cauchy if for every \(\epsilon > 0\), there exist a number \(m = m(\epsilon)\) such that \(\{k \in \mathbb{N} : |x_k - x_m| \geq \epsilon\} \in I\).

Definition 1.5. \([1, 7]\) The condition \([1, 7]\) in the present paper we defined the following lemmas.

Lemma 1.6. \([1, 7]\) The condition \([1, 7]\) hold if and only if there exist a point \(t_0 > 0\) such that \(\sup_k f_k(t_0) < \infty\).

Lemma 1.7. \([22]\) Let \(K \in L(I)\) and \(M \subseteq N\). If \(M \neq 1\) then \(M \cap K \neq 1\).

Lemma 1.8. \([21]\) If \(I \subseteq 2^N\) and \(M \subseteq N\). If \(M \neq 1\) then \(M \cap K \neq 1\).

Let \(F = (f_k)\) be a sequence of modulus functions, \(p = (p_k)\) be a bounded sequence of positive real numbers and \(u = (u_k)\) be a sequence of strictly positive real numbers. In the present paper we defined the following sequence spaces:

\[
c_0^I(F, p, u, \Delta_n^u) = \{(x_k) \in w : I - \lim_k f_k(|u_k \Delta_n^u x_k|^p) = 0\} \in I,
\]

\[
l_0^I(F, p, u, \Delta_n^u) = \{(x_k) \in w : I - \sup_k f_k(|u_k \Delta_n^u x_k|^p) < \infty\} \in I.
\]

If \(F = f_k(x) = x\), for all \(k\), we have

\[
c_0^I(p, u, \Delta_n^u) = \{(x_k) \in w : I - \lim_k (u_k \Delta_n^u x_k)^p = 0\} \in I,
\]

and

\[
l_0^I(p, u, \Delta_n^u) = \{(x_k) \in w : I - \sup_k (u_k \Delta_n^u x_k)^p < \infty\} \in I.
\]

If \((p_k) = 1, \) for all \(k \in \mathbb{N}\), then

\[
c_0^I(F, u, \Delta_n^u) = \{(x_k) \in w : I - \lim_k f_k(|u_k \Delta_n^u x_k|) = 0\} \in I,
\]

and

\[
l_0^I(F, u, \Delta_n^u) = \{(x_k) \in w : I - \sup_k f_k(|u_k \Delta_n^u x_k|) < \infty\} \in I.
\]

If \((p_k) = 1, \) for all \(k \in \mathbb{N}\) and \((u_k) = 1, \) for all \(k, \) we have

\[
c_0^I(F, \Delta_n^u) = \{(x_k) \in w : I - \lim_k f_k(|\Delta_n^u x_k|) = 0\} \in I,
\]

and

\[
l_0^I(F, \Delta_n^u) = \{(x_k) \in w : I - \sup_k f_k(|\Delta_n^u x_k|) < \infty\} \in I.
\]
If \(F = f_k(x) = x \), for all \(k \) and \((p_k) = 1\), for all \(k \in \mathbb{N} \), then
\[
c_0^1(u, \Delta^u_p) = \{(x_k) \in w : I - \lim(|u_k\Delta^u_p x_k|) = 0\} \in I,
\]
and
\[
l_\infty^1(u, \Delta^u_p) = \{(x_k) \in w : I - \sup_\Delta^u_p x_k < \infty\} \in I.
\]
If \(F = f_k(x) = x \), \((p_k) = 1\) and \((u_k) = 1\), for all \(k \), we have
\[
c_0^1(\Delta^u_p) = \{(x_k) \in w : I - \lim(|\Delta^u_p x_k|) = 0\} \in I,
\]
and
\[
l_\infty^1(\Delta^u_p) = \{(x_k) \in w : I - \sup_\Delta^u_p x_k < \infty\} \in I.
\]
The following inequality will be used throughout the paper. Let \(p = (p_k) \) be a sequence of positive real numbers with \(0 < p_k \leq \sup_k p_k = H \), and let \(D = \max\{1, 2^{H-1}\} \). Then, for the factorable sequences \((a_k)\) and \((b_k)\) in the complex plane, we have
\[
|a_k + b_k|^p \leq D(|a_k|^p + |b_k|^p).
\]
The main purpose of this paper is to study some new difference sequence spaces in more general settings defined by a sequence of modulus functions. We also make an effort to study some algebraic, topological properties and interesting inclusion relations between the above defined sequence spaces.

2. Main results

Theorem 2.1. Let \(F = (f_k) \) be a sequence of modulus functions, then \(c_0^1(F, p, u, \Delta^u_p) \) and \(l_\infty^1(F, p, u, \Delta^u_p) \) are linear spaces.

Proof. Let \(x = (x_k) \) and \(y = (y_k) \in c_0^1(F, p, u, \Delta^u_p) \) and for \(\alpha, \beta \in \mathbb{C} \). Then there exist integers \(M_\alpha \) and \(M_\beta \) such that \(|\alpha| \leq M_\alpha \) and \(|\beta| \leq M_\beta \). Since \(F = (f_k) \) is a sequence of modulus functions so using the inequality (1), we have
\[
\begin{align*}
f_k(|u_k\Delta^u_p (\alpha x_k + \beta y_k)|^p) & \leq D(M_\alpha)^{f_k(|u_k\Delta^u_p x_k|^p)} + D(M_\beta)^{f_k(|u_k\Delta^u_p y_k|^p)} \\
& \rightarrow 0 \text{ as } k \rightarrow \infty.
\end{align*}
\]
Therefore \(\alpha x + \beta y \in c_0^1(F, p, u, \Delta^u_p) \). Hence \(c_0^1(F, p, u, \Delta^u_p) \) is a linear space. Similarly we can prove that \(l_\infty^1(F, p, u, \Delta^u_p) \) is also a linear space. \(\Box \)

Theorem 2.2. Let \(F = (f_k) \) be a sequence of modulus functions, then: \(c_0^1(F, p, u, \Delta^u_p) \) and \(l_\infty^1(F, p, u, \Delta^u_p) \) are paranormed spaces with paranorm
\[
g(x) = \sup_\Delta^u_p x_k \Delta^u_p x_k |^p \]
where \(H = \sup_k p_k < \infty \) and \(M = \max(1, H) \).
Proof. Clearly $g(x) = g(-x)$ for all $x \in c_0^\alpha(F, p, u, \Delta^n_u)$. It is trivial that $u_k \Delta^n_u x_k = 0$ for $x = 0$. Since $\frac{p}{\alpha} \leq 1$, using Minkowski’s inequality, we have

$$\|f_k([u_k \Delta^n_u x_k + u_k \Delta^n_u y_k]^p)]^\frac{1}{p} \leq \|f_k([u_k \Delta^n_u x_k]^p)]^\frac{1}{p} + \|f_k([u_k \Delta^n_u y_k]^p)]^\frac{1}{p},$$

Hence $g(x + y) \leq g(x) + g(y)$. Finally to check the continuity of scalar multiplication, let us take a complex number λ by definition, we have

$$g(\lambda x) = \sup_k f_k([u_k \Delta^n_u \lambda x_k]^p)]^\frac{1}{p} \leq \sup_k f_k([u_k \Delta^n_u x_k]^p)]^\frac{1}{p} \leq K_1 \sup_k f_k([u_k \Delta^n_u x_k]^p)]^\frac{1}{p},$$

where K_1 is a positive integer such that $|\lambda| \leq K_1$. Let $\lambda \to 0$ for any fixed x with $g(x) = 0$. By definition for $|\lambda| < 1$, we have

$$\sup_k f_k([u_k \Delta^n_u \lambda x_k]^p)]^\frac{1}{p} < \epsilon \text{ for } n > N(\epsilon).$$

(2) Also, for $1 \leq n \leq N$, taking λ small enough, since f_k is continuous, we have

$$\sup_k f_k([u_k \Delta^n_u \lambda x_k]^p)]^\frac{1}{p} < \epsilon.$$

(3) (2) and (3) implies that $g(\lambda x) \to 0$ as $\lambda \to 0$. This completes the proof. For more details see [24, 25].

Theorem 2.3. Let $F = (f_k)$ be a sequence of modulus functions and $\alpha = \lim_{t \to \infty} \frac{f_k(t)}{t}$, $\frac{p}{\alpha} > 0$. Then $l_{\infty}(F, p, u, \Delta^n_u) \subset l_{\infty}(p, u, \Delta^n_u)$.

Proof. Let $\alpha > 0$. By definition of α, we have $f_k(t) \geq \alpha t$, for all $t \geq 0$. Since $\alpha > 0$, we have $t \leq \frac{1}{\alpha} f_k(t)$ for all $t \geq 0$. Let $x = (x_k) \in l_{\infty}(F, p, u, \Delta^n_u)$. Thus we have

$$l - \sup_k (u_k \Delta^n_u x_k)^{\frac{p}{\alpha}} \leq l - \frac{1}{\alpha} \sup_k f_k([u_k \Delta^n_u x_k]^p)] \leq \infty,$$

Which implies that $x = (x_k) \in l_{\infty}(p, u, \Delta^n_u)$. This completes the proof. For more details see [10].

Theorem 2.4. Let $F = (f_k)$ be a sequence of modulus functions, then

$$l_{\infty}(p, u, \Delta^n_u) \subset l_{\infty}(F, p, u, \Delta^n_u).$$

Proof. Let $x = (x_k) \in l_{\infty}(p, u, \Delta^n_u)$, then we have $l - \sup_k (u_k \Delta^n_u x_k)^{\frac{p}{\alpha}} < \infty$. Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f_k(t) < \epsilon$ for $0 \leq t \leq \delta$. Thus we have

$$l - \sup_k f_k([u_k \Delta^n_u x_k]^p)] = l - \sup_{k, \{x_k\} \leq \delta} f_k([u_k \Delta^n_u x_k]^p)] + l - \sup_{k, \{x_k\} > \delta} f_k([u_k \Delta^n_u x_k]^p)].$$

Since $F = (f_k)$ is a sequence of modulus functions, we have

$$l - \sup_{k, \{x_k\} \leq \delta} f_k([u_k \Delta^n_u x_k]^p)] \leq \epsilon.$$

(4) For $|\Delta^n_u x_k| > \delta$, and the fact that

$$|\Delta^n_u x_k| < \frac{|\Delta^n_u x_k|}{\delta} < \left[1 + \frac{|\Delta^n_u x_k|}{\delta}\right].$$
Proof.
Let $x \in I_k = \{x \in \mathbb{R} : k \leq x < k+1\}$ for $k \in \mathbb{Z}$. Thus

$$\frac{f_k(|u_k x|)}{|u_k x|} > \frac{2f_k(1)}{\delta}.$$

Thus

$$\sup_{k, |x_k| > 0} f_k(|u_k x|) \leq \frac{2f_k(1)}{\delta} \sup_k |u_k x|.$$

From equation (4) and (5) we have

$$l - \sup_k f_k(|u_k x|) \leq \epsilon + \frac{2f_k(1)}{\delta} \sup_k |u_k x|.$$

Since $x = (x_k) \in I_\infty^p(F, p, u, \Delta_v^u)$. Hence we have $x = (x_k) \in I_\infty^p(F, p, u, \Delta_v^u)$ and this completes the proof.

Theorem 2.5. The inclusion $I_\infty^p(F, p, u, \Delta_v^u) \subseteq c_0^v(u, \Delta_v^u)$ holds if and only if

$$\lim_k f_k(t) = \infty \text{ for } t > 0.$$

Proof. Let $I_\infty^p(F, p, u, \Delta_v^u) \subseteq c_0^v(u, \Delta_v^u)$ such that $\lim_k f_k(t) = \infty$ for $t > 0$ does not hold. Then there is a number $t_0 > 0$ and a sequence (k_i) of positive integers such that

$$f_k(t_0) \leq M < \infty.$$

Define the sequence $x = (x_k)$ by:

$$(x_k) = \begin{cases} t_0, & \text{if } k = k_i, \ i = 1, 2, 3 \ldots; \\ 0, & \text{otherwise}. \end{cases}$$

Thus $x \in I_\infty^p(F, p, u, \Delta_v^u)$ by (7). But $x \not\in c_0^v(u, \Delta_v^u)$, for $v_k = p_k = 1$, for all $k \in \mathbb{N}$ so that (6) must holds.

Conversely, let (6) hold. If $x \in I_\infty^p(F, p, u, \Delta_v^u)$, then $f_k(|u_k x|) \leq M < \infty$, for all k. Suppose that $x \not\in c_0^v(u, \Delta_v^u)$. Then for some number $c_0 > 0$ and positive integer k_0, we have $|u_k x| < c_0$ for $k \geq k_0$. Therefore $f_k(c_0) \geq f_k(|u_k x|) \leq M$ for $k \geq k_0$, which contradicts (6). Hence $x \in c_0^v(u, \Delta_v^u)$.

Theorem 2.6. The inclusion $I_\infty^p(u, \Delta_v^u) \subseteq c_0^v(F, p, u, \Delta_v^u)$ holds if and only if

$$\lim_k f_k(t) = 0 \text{ for } t > 0.$$

Proof. Suppose that $I_\infty^p(u, \Delta_v^u) \subseteq c_0^v(F, p, u, \Delta_v^u)$ but (8) does not hold then

$$\lim_k f_k(t_0) = l \neq 0, \text{ for some } t_0 > 0.$$

Define the sequence $x = (x_k)$ by

$$(x_k) = t_0 \sum_{v=0}^{k-1} (-1)^v \left(\frac{n + k - v - 1}{k - v} \right)$$

for $k = 1, 2, 3, \ldots$ Then $x \not\in c_0^v(F, p, u, \Delta_v^u)$ by (9) for $v_k = p_k = 1$, for all $k \in \mathbb{N}$. Hence (8) must hold.

Conversely, let $x \in I_\infty^p(u, \Delta_v^u)$ and suppose that (8) holds. Then $|u_k| x| \leq M < \infty$ for $k = 1, 2, 3, \ldots$. Therefore $f_k(|u_k x|) \leq f_k(M)$ for $k = 1, 2, 3, \ldots$ and $\lim_k f_k(|u_k x|) \leq \lim_k f_k(M) = 0$ by (8). Hence $x \in c_0^v(F, p, u, \Delta_v^u)$.

Theorem 2.7. Let \(F = (f_k) \) be a sequence of modulus functions, then the following statements are equivalent:

(i) \(\prod_{k=1}^n (u, v_k) \subseteq \prod_{k=1}^n (u, \Delta^n_k) \).

(ii) \(c^0_k(u, \Delta^n_k) \subseteq \prod_{k=1}^n (u, \Delta^n_k) \).

(iii) \(\sup_k f_k(t) < \infty, (t > 0) \).

Proof. (i) \(\Rightarrow \) (ii): is obvious.

(ii) \(\Rightarrow \) (iii): Let \(c^0_k(u, \Delta^n_k) \subseteq \prod_{k=1}^n (u, \Delta^n_k) \). Suppose that (iii) is not true. Then by Lemma 1.5

\[
\sup_k f_k(t) = \infty, \quad \text{for all} \quad t > 0
\]

and therefore there is a sequence \((k_i)\) of positive integers such that

\[
f_k \left(\frac{1}{i} \right) > i, \quad \text{for each} \quad i = 1, 2, 3 \ldots \tag{10}
\]

Define the sequence \(x = (x_k) \) as follows:

\[
(x_k) = \begin{cases}
\frac{1}{i}, & \text{if} \ k = k_i \quad i = 1, 2, 3 \ldots; \\
0, & \text{otherwise}.
\end{cases}
\]

Then \(x \in c^0_k(u, \Delta^n_k) \) but by (10) \(x \notin \prod_{k=1}^n (u, \Delta^n_k) \), for \(v_k = p_k = 1 \), for all \(k \in \mathbb{N} \) which contradicts (ii). Hence (iii) must hold.

(iii) \(\Rightarrow \) (i): Let (iii) be satisfied and \(x \in \prod_{k=1}^n (u, \Delta^n_k) \). If we suppose that \(x \notin \prod_{k=1}^n (u, \Delta^n_k) \). Then

\[
\sup_k f_k(l_k^{\Delta^n_k x_k}) = \infty \quad \text{for} \quad u \Delta^n x_k \in \prod_{k=1}^n.
\]

If we take \(t = |u_k \Delta^n x_k| \). Then \(\sup_k f_k(t) = \infty \) which contradicts (iii). Hence \(\prod_{k=1}^n (u, \Delta^n_k) \subseteq \prod_{k=1}^n (u, \Delta^n_k) \).

Theorem 2.8. Let \(F = (f_k) \) be a sequence of modulus functions, then the following statements are equivalent:

(i) \(c^0_k(F, p, u, \Delta^n_k) \subseteq c^0_k(u, \Delta^n_k) \).

(ii) \(c^0_k(F, p, u, \Delta^n_k) \subseteq \prod_{k=1}^n (u, \Delta^n_k) \).

(iii) \(\inf_k f_k(t) > 0, (t > 0) \).

Proof. (i) \(\Rightarrow \) (ii): is obvious.

(ii) \(\Rightarrow \) (iii): Let \(c^0_k(F, p, u, \Delta^n_k) \subseteq \prod_{k=1}^n (u, \Delta^n_k) \). Suppose that (iii) is not true. Then by Lemma 1.6,

\[
\inf_k f_k(t) = 0, \quad \text{for all} \quad t > 0
\]

and therefore there is a sequence \((k_i)\) of positive integers such that

\[
f_k(k^2) < \frac{1}{i}, \quad \text{for each} \quad i = 1, 2, 3 \ldots \tag{11}
\]

Define the sequence \(x = (x_k) \) as follows:

\[
(x_k) = \begin{cases}
k^2, & \text{if} \ k = k_i \quad i = 1, 2, 3 \ldots; \\
0, & \text{otherwise}.
\end{cases}
\]

By (11) \(x \in c^0_k(F, p, u, \Delta^n_k) \) but \(x \notin \prod_{k=1}^n (u, \Delta^n_k) \), for \(v_k = p_k = 1 \), for all \(k \in \mathbb{N} \) which contradicts (ii). Hence (iii) must hold.

(iii) \(\Rightarrow \) (i): Let (iii) be satisfied and \(x \in c^0_k(F, p, u, \Delta^n_k) \). i.e \(I - \lim_k f_k(l_k^{\Delta^n_k x_k}) = 0 \). If we suppose that \(x \notin c^0_k(u, \Delta^n_k) \). Then for some number \(\varepsilon_0 > 0 \) and positive integer \(k_0 \), we have \(|u_k \Delta^n x_k| \leq \varepsilon_0 \) for \(k > k_0 \). Therefore \(f_k(\varepsilon_0) \geq f_k(|u_k \Delta^n x_k|) \) for \(k > k_0 \) and hence \(\lim_k f_k(\varepsilon_0) > 0 \), which contradicts our assumption that \(x \notin c^0_k(u, \Delta^n_k) \). Thus \(c^0_k(F, p, u, \Delta^n_k) \subseteq c^0_k(u, \Delta^n_k) \).
References