On M-cleavable Near Rings

A. Y. Abdelwanis

Abstract. Let \(R \) be a right near ring with identity and \(M \) be a near ring \(R \)-module. In this paper we introduce the concepts \(M \)-even, \(M \)-odd and \(M \)-cleavable such that even, odd and cleavable are special cases of this concepts respectively. If \(R \) is zero symmetric, \(M \) is faithful and \(n \) is a positive integer we show that if \(A \) belongs to the generalized matrix near ring \(\text{Mat}_n(R,M) \) and suppose that every elementary matrix appears in any expression represents \(A \) is even then \(A \) is even. Also the same is true for odd if \(R,M \) are abelian. In the end we define \(R \) is an abelian strong \(\sigma \)-generated and we show if \(R \) is \(M \)-cleavable, then \(\text{Mat}_n(R,M) \) is cleavable.

1. Introduction

\((R,+,\cdot)\) is a right near ring if (1) \((R,+)\) is a group (not necessary abelian). (2) \((R,\cdot)\) is a semigroup. (3) \((s+t)r=sr+tr\ \forall r,s,t \in R\). \(R \) is zero symmetric if \(R = R_0 = \{ r \in R : r0 = 0 \} \). Recall that, in \(R \), (1) \(r \in R \) is called even if \(r(-s) = rs, \forall r,s \in R \). (2) \(r \in R \) is called odd if \(r(-s) = -rs, \forall r,s \in R \). (3) \(R \) is called cleavable if each element \(r \in R \) is the sum of an even and an odd element. \(M \) is a left \(R \)-module if \((M,+) \) is a group need not be abelian and there exist a map \(\cdot : R \times M \rightarrow M \) satisfies: (1) \((r+s)m = rm + sm, \forall r,s \in R, \forall m \in M \). (2) \((rm)m = r(sm)m, \forall r,s \in R, \forall m \in M \). \(M \) is faithful means that if \(r.m = 0, \forall m \in M \) then \(r = 0 \). \(M \) is unital if \(1.m = m, \forall m \in M \). More information are in [3].

In this paper, we introduce the definitions of \(M \)-even, \(M \)-odd and \(M \)-cleavable which are extensions of the definitions of even, odd and cleavable respectively. We denote \(M^n \) the direct sum of \(n \) copies of \((M,+)\) is also a faithful left \(R \)-module. Now we define special functions in \(M_0(M^n) \) will be denoted by \(f_{ij}^r, r \in R \) and \(1 \leq i,j \leq n \)

\[
f_{ij}^r : M^n \rightarrow M^n \text{ such that } r \in R \text{ and } 1 \leq i,j \leq n,
\]

\[
f_{ij}^r(a_1, ..., a_k) = (0, ..., 0, r a_j, 0, ..., 0) \text{ where } ra_j \text{ in the } i-\text{th position},
\]

\[
(a_1, ..., a_k) ∈ M^n \text{ and } f_{ij}^r = l_i f^r \pi_j \text{ where } l_i : M \rightarrow M^n
\]

the \(i - \)th injection, \(\pi_j : M^n \rightarrow M \) is the \(j - \)th projection and \(f^r : M \rightarrow M
\]

such that \(f^r(s) = rs \forall s \in M \).

So \(f_{ij}^r \) is the function from \(M^n \) to \(M^n \) that takes a \(n \)-tuple with entries from \(M \), multiples the \(j \)-th entry \(a_j \) by \(r \) using the module action of \(R \) on \(M \), puts the result \(ra_j \) into the \(i \)-th position and puts 0 in the other positions.

2010 Mathematics Subject Classification. 16Y30.

Keywords. Cleavable near ring; \(M \)-cleavable near ring; \(M \)-even and \(M \)-odd.

Email address: ahmedyones2@yahoo.com (A. Y. Abdelwanis)
We may sometimes write \(f_{ij} \) as \([r; i, j]\). In [2], K. C. Smith introduced the near-ring of \(n \times n \) generalized matrix near ring over \(R \) using the faithful \(R \)-module \(M \) which is the subnear ring \(\text{Mat}_n(R; M) \) of \(M_0(M^n) \) generated by \(f_{ij}^r : r \in R \) and \(1 \leq i, j \leq n \). The identity matrix \(f_{11}^1 + f_{22}^1 + \ldots + f_{nn}^1 \). A matrix of the form \(\sum_{i=1}^{n} f_{ii}^r \) is called a diagonal matrix.

\(n \times n \) generalized matrix near ring over \(R \) using the faithful \(R \)-module \(M \) is, of course, a function from \(M^n \) to \(M^n \), but we shall often need representations of matrices. For this reason we use the set \(E_n(R) \) of matrix expressions, i.e. the subset of the free semigroup over the alphabet of symbols \(\{ f_{ij}^r : r \in R, 1 \leq i, j \leq n \} \cup \{ (,), + \} \) recursively defined by the following rules:

1. \(f_{ij}^r \in E_n (R) \) for \(1 \leq i, j \leq n \) and all \(r \in R \).
2. If \(A, E \in E_n(R), \) then \(A + E \in E_n(R) \).
3. If \(A, E \in E_n(R), \) then \((A)(E) \in E_n(R) \).

The length \(l(E) \) of an expression \(E \) is the number of \(f_{ij}^r \) in \(E \). The weight \(\omega(X) \) of a matrix \(X \) is the length of an expression of minimal length representing \(X \). The matrix represented by \(E \in E_n(R) \) is denoted by \(\mu(E) \). Every matrix is represented by at least one expression; however the same matrix may be represented by many different expressions. In spite of this we shall usually not distinguish between expressions and matrices, except when such a distinction becomes necessary to avoid ambiguity. Also, we shall omit parentheses if the meaning is clear. Those functions \(f_{ij}^r \), in the ring case, correspond to matrices with \(r \) in position \((i, j)\) and 0 elsewhere, so every \(n \times n \) matrix over a ring \(R \) is a sum of elements of the generating set \(X_n(R) = \{ f_{ij}^r : r \in R, 1 \leq i, j \leq n \} \).

2. Main Results

Definition 2.1. Let \(R \) be a near ring, \(M \) is a near ring \(R \)-module. \(r \in R \) is called \(M \)-even if for all \(m \in M : r(-m) = rm \), and is called \(M \)-odd if for all \(m \in M : r(-m) = -rm \).

It is clearly that \(r \in R \) is even if it is \(R \)-even and it is odd if it is \(R \)-odd.

Lemma 2.2. Let \(R \) be a near ring, \(M \) is a near ring \(R \)-module, then:

1. Every constant element in \(R \) is \(M \)-even.
2. The set of all \(M \)-even elements in \(R \) is a subnear ring and left invariant.
3. If \(R \) is abelian then the set of all \(M \)-odd elements in \(R \) is a subnear ring.

Proof. (1) Let \(r \in R \) be constant then we have

\[
rm = (r0)m = r(0m) = r0_m \quad \forall m \in M.
\]

So

\[
r(-m) = r0_m = rm \quad \forall m \in M.
\]

i.e., \(r \) is \(M \)-even.

(2) Let \(E \subseteq R \), denote the set of all \(M \)-even elements of \(R \). Let \(a, b \in E \). So,

\[
(a + b)(-m) = a(-m) + b(-m) = am + bm = (a + b)m \quad \forall m \in M.
\]
Hence, \(a + b \in E\). Also
\[
(-a)(-m) = -(a(-m)) = -(am) = (-a)m \quad \forall m \in M.
\]
Then \(-a \in E\). Further,
\[
(ab)(-m) = a(b(-m)) = a(bm) = (ab)m \quad \forall m \in M.
\]
So \(ab \in E\). Thus \(E\) is subnear ring of \(R\). Now let \(r \in R\). Then,
\[
(ra)(-m) = r(a(-m)) = r(am) = (ra)m.
\]
Hence, \(RE \subseteq E\).

(3) Let \(O \subseteq R\), denote the set of all \(M\)–even elements of \(R\). Let \(a, b \in O\). Then,
\[
(a + b)(-m) = a(-m) + b(-m) = -am - bm = (-a - b)m = -(a + b)m \quad \forall m \in M.
\]
Hence \(a + b \in O\). Also
\[
(-a)(-m) = -(a(-m)) = -(am) = (-a)m \quad \forall m \in M.
\]
Then \(-a \in O\). Further,
\[
(ab)(-m) = a(b(-m)) = a(bm) = -(ab)m \quad \forall m \in M.
\]
So \(ab \in O\). Thus \(O\) is subnear ring of \(R\). □

In the following \(R\) be a zero-symmetric near ring with identity, \(M\) be a faithful near ring \(R\)–module.

Lemma 2.3. If \(n > 1\), then:

(1) \(a \in R\) is \(M\)–even if and only if \(f_{ij}^a \in \text{Mat}_n(R, M)\) is even.

(2) \(a \in R\) is \(M\)–odd if and only if \(f_{ij}^a \in \text{Mat}_n(R, M)\) is odd.

Proof. (1)\((\Rightarrow)\) Suppose that \(a \in R\) is \(M\)–even and let \(A \in \text{Mat}_n(R, M), a \in M^n\). If \(A\alpha = (b_1, \ldots, b_n)\), then
\[
(f_{ij}^a(-A))\alpha = f_{ij}^a(-b_1, \ldots, -b_n) = (0, 0, \ldots, a(-b_i), 0, \ldots, 0) = (0, 0, \ldots, ab_j, 0, \ldots, 0) = f_{ij}^a(A\alpha).
\]
Hence, \(f_{ij}^0(-A) = f_{ij}^0A \), for all \(A \in \text{Mat}_n(R, M) \), and so \(f_{ij}^0 \in \text{Mat}_n(R, M) \) is even.

\((\Leftarrow)\) Conversely, suppose that \(f_{ij}^0 \in \text{Mat}_n(R, M) \) is even. Let \(\delta = (x_1, \ldots, x_n) \in M^n \). Note that \(f_{ij}^0(-I) = f_{ij}^{0}I = f_{ij}^0 \), so \((f_{ij}^0(-I))(x_1, \ldots, x_n) = f_{ij}^0(x_1, \ldots, x_n) \). In particular, take \(\delta = (0, 0, \ldots, m, 0, \ldots, 0) \in M^n \), then
\[
(f_{ij}^0)^{-1}_1 + \ldots + f_{ij}^{-1}_m)(0, 0, \ldots, m, 0, \ldots, 0) = f_{ij}^0(0, 0, \ldots, m, 0, \ldots, 0)
\]
\[(0, 0, \ldots, a(-m), 0, \ldots, 0) = (0, 0, \ldots, am, 0, \ldots, 0).
\]
Then, \(a(-m) = am \ \forall m \in M \), and so \(a \in R \) is \(M \)-even.

\((2)(\Rightarrow)\) Suppose that \(a \in R \) is \(M \)-odd and let \(A \in \text{Mat}_n(R, M) \), \(a \in M^n \). If \(A\alpha = (b_1, \ldots, b_n) \), then
\[
(f_{ij}^0(-A))\alpha = f_{ij}^0(-b_1, \ldots, -b_n)
\]
\[
= (0, 0, \ldots, a(-b_i), 0, \ldots, 0)
\]
\[
= (0, 0, \ldots, -ab_i, 0, \ldots, 0)
\]
\[
= -f_{ij}^0(A\alpha).
\]
Hence, \(f_{ij}^0(-A) = -f_{ij}^0A \), for all \(A \in \text{Mat}_n(R, M) \), and so \(f_{ij}^0 \in \text{Mat}_n(R, M) \) is odd.

\((\Leftarrow)\) Conversely, suppose that \(f_{ij}^0 \in \text{Mat}_n(R, M) \) is odd. Let \(\delta = (x_1, \ldots, x_n) \in M^n \). Note that \(f_{ij}^0(-I) = -f_{ij}^{0}I = -f_{ij}^0 \), so \((f_{ij}^0(-I))(x_1, \ldots, x_n) = -f_{ij}^{0}(x_1, \ldots, x_n) \). In particular, take \(\delta = (0, 0, \ldots, m, 0, \ldots, 0) \in M^n \), then
\[
(f_{ij}^0)^{-1}_1 + \ldots + f_{ij}^{-1}_m)(0, 0, \ldots, m, 0, \ldots, 0) = -f_{ij}^0(0, 0, \ldots, m, 0, \ldots, 0)
\]
\[(0, 0, \ldots, a(-m), 0, \ldots, 0) = (0, 0, \ldots, -am, 0, \ldots, 0).
\]
Then, \(a(-m) = -am \ \forall m \in M \), and so \(a \in R \) is \(M \)-odd. \(\square\)

Lemma 2.4. Let \(A \in \text{Mat}_n(R, M) \) and suppose that every elementary matrix appears in any expression represents \(A \) is even. Then \(A \) is even.

Proof. We use induction on \(w(A) \). Basis of induction:

Suppose that \(w(A) = 1 \), so \(A = f_{ij}^0, a \in A, 1 \leq i, j \leq n \) then the results follows from the hypothesis.

Induction step: assume that the results holds for all matrices with weight less than \(m, m \geq 2 \). If \(w(A) = m \), then \(A = A' + A'' \) or \(A = CD \), where \(w(C), w(D) < m \). For any \(B \in \text{Mat}_n(R, M) \),
\[
A(-B) = (C + D)(-B)
\]
\[
= C(-B) + D(-B)
\]
\[
= CB + DB
\]
\[
= (C + D)B
\]
\[
= AB.
\]

\(\square\)
Lemma 2.5. Let R, M be abelian, $A \in \text{Mat}_n(R, M)$ and suppose that every elementary matrix appears in any expression represents A is odd then A is odd.

Proof. We use induction on $w(A)$. Basis of induction: Suppose that $w(A) = 1$, so $A = f^a_{ij}, a \in A, 1 \leq i, j \leq n$ then the results follows from the hypothesis.

Induction step: assume that the results holds for all matrices with weight less than $m, m \geq 2$. If $w(A) = m$, then $A = C + D$ or $A = CD$, where $w(C), w(D) < m$. For any $B \in \text{Mat}_n(R, M)$,

$$A(-B) = (C + D)(-B) = C(-B) + D(-B) = -CB - DB = -(D + C)B = -(C + DB) = -AB.$$

From Definition 2.6. $\text{Mat}_n(R, M)$ is said to be strong σ--generated if every $n \times n$ generalized matrix $A \in \text{Mat}_n(R, M)$ is a sum of elements of $X_n(R) = \{ f^a_{ij} : r \in R, 1 \leq i, j \leq n \}$. Also we say that R is M, σ--generated if $\text{Mat}_n(R, M)$ is strong σ--generated for any natural number n.

Lemma 2.7. Let R be an abelian M, σ--generated, M is abelian. If $A \in \text{Mat}_n(R, M)$ is even then every elementary matrix appears in any expression represents A is even.

Proof. Since R is abelian M, σ--generated, then every $A \in \text{Mat}_n(R, M)$ can be written as

$$A = \sum_{1 \leq i, j \leq n} f^a_{ij} a_{ij} \in R.$$

To show that f^a_{ij} is even we show that a_{ij} is M--even, for all i, j. Let $\alpha = (x_1, ..., x_n) \in M^n$. Note that $A(-I) = AI = A$, so $A(-I)\alpha = A\alpha$. In particular, take $\alpha = (x, 0, ..., 0)$. It follows that

$$\pi_k(A(-I)(x, 0, ..., 0)) = \pi_k(A(x, 0, ..., 0))$$

and so

$$a_{k1}(-x) + a_{k2}0 + ... + a_{kn}0 = a_{k1}x + a_{k2}0 + ... + a_{kn}0.$$

This means that $a_{k1}(-x) = a_{k1}x$, for all k. Also if $\alpha = (0, x, ..., 0)$ then $a_{k2}(-x) = a_{k2}x$, for all k. Hence, by the same arrangement, $a_{ij}(-x) = a_{ij}x$, for all $i, j, x \in M$. Thus a_{ij} is M--even, and so f^a_{ij} is even for all i, j.

Definition 2.8. R is said to be M--cleavable if each $r \in R$ is the sum of M--even and M--odd element.
Theorem 2.9. Let R be an abelian M, σ–generated. If R is M–cleavable, then $\text{Mat}_n(R, M)$ is cleavable.

Proof. Since R is abelian M, σ–generated then every $A \in \text{Mat}_n(R, M)$ can be written as

$$A = \sum_{1 \leq i, j \leq n} a_{ij} \in R.$$

Since R is M–cleavable, then $a_{ij} = e_{ij} + o_{ij}$, where $e_{ij} \in E$ (the set of all M–even), $o_{ij} \in O$ (the set of all M–odd) for all i, j. It follows that

$$A = \sum_{1 \leq i, j \leq n} e_{ij} + \sum_{1 \leq i, j \leq n} o_{ij}.$$

Since e_{ij} is M–even, o_{ij} is M–odd so from Lemma 2.3, f_{ij}^{e} is even and f_{ij}^{o} is odd, for all i, j. Hence

$$\sum_{1 \leq i, j \leq n} f_{ij}^{e}$$

is even and

$$\sum_{1 \leq i, j \leq n} f_{ij}^{o}$$

is odd. This means that $\text{Mat}_n(R, M)$ is cleavable. \square

References