Matrix-Mappings in A Separating Duality on A Non-Archimedean Valued Field

R. Ameziane Hassania, A. El Amranib, M. Babahmedb

aDepartment of Mathematics and Computer Science, Faculty of Sciences Dhar Mahraz, B.P 1796 Atlas Fe’s, Morocco.
bDepartment of Mathematics and Computer Science, Faculty of Sciences Meknes, Morocco.

(Received: 18 March 2012; Accepted: 11 May 2012)

Abstract. We define the notion of matrix-mappings in separated duality \(\langle X, Y \rangle\) of vector spaces over a non-archimedean valued field \(K\), and we characterize these matrix-mappings. Then, we introduce a topology in the spaces of matrix-mappings and we give some applications in the algebras of matrix-mappings over a \(p\)-adic field \(\mathbb{Q}_p\).

1. Introduction

Robinson [14] and Melvin-Melvin [11] are generalized the concept of summing to the infinite matrices formed of operators and they, separately, given the version of the two theorems for sequence spaces of a Banach space. Then Ramanujan [12] has generalized the two theorems for spaces of sequences on a Frechet space, he defined a topology on the space of infinite matrices of operators between Frechet spaces which transforms convergent sequences into convergent sequences. He shown that, with this topology, said space is a Frechet space. The Kojima-Schur theorem has been generalized by Junde, Dohan and Minhyung for the sequence spaces over a barrelled spaces [10, Theorem 1, pp. 286]. The version of these two theorems in case of sequence spaces over a non archimedean valuated field \(K\) is gave by Rangachari and Srinivasan [13].

In [5], we are interested in matricial operators which preserve schauder basis in \(p\)-adic analysis. For more about Schauder basis see [9]. In [2], Ameziane Hassani and Babahmed are interested in the theory of non-archimedean summation, they introduced a topology on the space of infinite matrices of operators between Frechet spaces on a non-archimedean \((\mathfrak{u},\mathfrak{a})\) valued field transforming null sequences into convergent sequences, and they have shown that this space is a metrizable complete topological group. Now in [6], we gave a generalization of Kojima-Schur and Toeplitz-Silverman theorems for the sequence spaces over a non archimedean locally \(K\)-convex BS-spaces thanks to a family of quasi-seminorms that we are defined.
We define the following sequence spaces over X. Let $\|\cdot\|_2$ be a norm on X. Preliminary set of conservative matrix-mappings for null sequences and show that it is a Banach space. We characterize the matrix-mappings that we will define, and then we introduce a topology on the set of conservative matrix-mappings for null sequences. Then we are interested in algebras of matrix-mappings on the ω-valued field K and we give some applications where the sequences are in a p-adic field Q_p.

2. Preliminary

Throughout this paper, K is a non-archimedean $(n.a)$ non trivially valued complete field with valuation $|\cdot|: (X, \|\cdot\|_X)$ a $n.a$ Banach space and Y a topological vector space over K (or K-vector space) that are in separated duality (X, Y). The duality theory for locally K-convex spaces can be found more extensively in [3], [15] and [16].

$(\omega(X), \tau_\omega(X))$ is the linear space of all sequences in X endowed with the product topology $\tau_\omega(X)$; this space is noted $\omega(K)$ (or ω, for short) in case when $X = K$. A sequence space over X is a subspace of $\omega(X)$.

We define the following sequence spaces over X,

$$
c_0(X) = \{ (x_k)_k \in \omega(X) : (x_k)_k \text{ converges to zero } \}
$$

$$
c(X) = \{ (x_k)_k \in \omega(X) : (x_k)_k \text{ converges in } X \},
$$

$$
\varphi(X) = \{ (x_k)_k \in \omega(X) : \text{ there exists } k_0 \in \mathbb{N} : x_k = 0 \text{ for all } k \geq k_0 \},
$$

$$
m(X) = \{ (x_k)_k \in \omega(X) : (x_k)_k \text{ is bounded in } X \}.
$$

For more information about topologies on non-archimedean sequence spaces see [7] and [8]. Let $a \in X$ and $k \geq 1$, we put $\delta_k(a) = (0, \ldots, 0, a, 0 \ldots)$ where a is in the k-th place and $\delta(a) = (a, a, \ldots)$. For all $y \in Y$, we put $\|y\| = \sup \{|(x, y)/\|x\|_X\| \leq 1\}$. If $\|y\| < +\infty$ for all $y \in Y$, $\|\cdot\|$ is a $n.a$ norm on Y; moreover, if $N_{\|\cdot\|_X} = \{ \|x\|_X / x \in X \} \subset |K|$, we have $\|y\| = \sup \{ \|x\|_X / x \neq 0 \}$, where $|K| = \{ |a| / a \in K \}$. If $\|\cdot\|$ is a $n.a$ norm on Y, $(Y, \|\cdot\|)$ is a $n.a$ Banach space. Henceforth, we assume that $N_{\|\cdot\|_X} \subset |K|$. Let $(y_k)_k \in \omega(Y)$, we put:

$$
\|\langle y_k, x_k \rangle\|_g = \sup \left\| \sum_{k=1}^n \langle x_k, y_k \rangle \right\|_n \geq 1, \|x_k\|_X \leq 1 (1 \leq k \leq n)
$$

and $R_n = (y_{nr}, y_{n+1r}, \ldots)$ for all $n \geq 1$. If $\|\langle y_k, x \rangle\|_g < +\infty$ for all $(y_k)_k \in \omega(Y)$, $\|\cdot\|_g$ is a $n.a$ norm on $\omega(Y)$ called $n.a$ norm of group. We have:

1. $\|y_k\|_g \leq \|R_n\|_g$ for all $k \geq n$;
2. $\|R_{n+1}\|_g \leq \|R_n\|_g$ for all $n \geq 1$;
3. $\|\sum_{k=n}^{n+p} \langle x_k, y_k \rangle \|_g \leq \|R_n\|_g \max_{n \leq k \leq n+p} \|x_k\|_X$;
4. $\|\langle y_k, x \rangle\|_g = \sup_k \|\langle y_k, x \rangle\|_g$.

We denote by $M(Y)$ the set of all infinite matrices $A = (y_{nk})_{n,k}$ such that $y_{nk} \in Y$ for all $n, k \geq 1$. If $D \subset \omega(X)$, the β-dual of D is the subspace of $\omega(Y)$ which is define by

$$
D^\beta = \left\{ (y_n)_n \in \omega(Y) : \lim_n \langle x_n, y_n \rangle = 0 \text{ for all } (x_n)_n \in D \right\}.
$$

D is called perfect if $D^\beta = D$. If D is perfect then $\varphi(X) \subset D$. We define B^β if $B \subset \omega(Y)$ on the same way.

$\varphi(X)^\beta = \omega(Y)$ and $\omega(X)^\beta = \varphi(Y)$. For all $D \subset \omega(X)$ (or $\omega(Y)$), $D \subset D^\beta$ and D^β is perfect.
Proposition 2.1. Let \((y_k)_k \in \omega(Y)\).

1. \((y_k)_k \in c_0(X) \iff \sup_k \|y_k\| < +\infty.\)
2. \((y_k)_k \in c(X) \iff \sup_k \|y_k\| < +\infty; \text{ for all } a \in X, (a, y_k)_k \in c(K).\)
3. \((y_k)_k \in m(X) \iff \lim_n \|R_n\|_y = 0.\)

Proof. See [1]. □

We have the criterion for permutation the order of the limits of a double sequence in \(K\).

Lemma 2.2. Let \((a_{nk})_{n,k}\) a double sequence in \(K\) such that:

1. \(\lim_k a_{nk} = a_n\) for all \(n \geq 1;\)
2. \(\lim_n a_{nk} = a_k\) uniformly on \(k.\)

Then \(\lim_k \lim_n a_{nk}\) and \(\lim_n \lim_k a_{nk}\) exist and are equal.

3. Matrix-Mappings

Let \(A = (y_{nk})_{n,k} \in \mathcal{M}(Y)\) and \(x = (x_k)_k \in \omega(X)\); if for all \(n \geq 1 \sum_k \langle x_k, y_{nk} \rangle\) converges in \(K\), we denote

\[
\langle x, A \rangle = \left(\sum_k \langle x_k, y_{nk} \rangle\right)_n
\]

the \(A\)-transform of \(x\) in \(\omega(K)\).

We say that \(A\) is a matrix-mapping of \(Y\) if there exists a space \(D\) of sequences on \(X\) and \(G\) a space of sequences on \(K\) such that for any \(x \in D\), \(\langle x, A \rangle \in G.\)

Definition 3.1. Let \(A\) a matrix-mapping on \(Y\) we say that \(A\) is:

1. conservative for the null sequences, if for all \(x \in c_0(X), \langle x, A \rangle \in c(K);\)
2. conservative, if for all \(x \in c(X), \langle x, A \rangle \in c(K);\)
3. regular for the null sequences, if for all \(x \in c_0(X), \langle x, A \rangle \in c_0(K);\)
4. coercive, if for all \(x \in m(X), \langle x, A \rangle \in c(K);\)
5. null coercive, if for all \(x \in m(X), \langle x, A \rangle \in c_0(K);\)
6. null-conservative, if for all \(x \in c(X), \langle x, A \rangle \in c_0(K).\)

Now we will characterize these matrix-mappings. We assume that \(Y\) is \(\sigma(Y,X)\)-complete.

Theorem 3.2. Let \(A\) a matrix-mapping on \(Y; A\) is conservative for the null sequences if and only if:

1. For all \(k \geq 1\), there exists \(y_k \in Y\) such that \(\lim_n y_{nk} = y_k\) in \((Y, \sigma(Y,X));\)
2. \(\sup_{n,k} \|y_{nk}\| < +\infty.\)

In this case we have: for all \((x_k)_k \in c_0(X),\)

\[
\lim_n \sum_k \langle x_k, y_{nk} \rangle = \sum_k \langle x_k, y_k \rangle.
\]
Proof. If \(A\) is conservative for the null sequences; for all \(a \in X\), \(\delta_k(a) \in c_0(X)\), therefore \((a, y_{nk})_n \in c(K)\), and then \((y_{nk})_n\) is a Cauchy sequence in \((Y, \sigma(Y, X))\), hence there exists \(y_k \in Y\) such that \((y_{nk})_n\) converges to \(y_k\) in \((Y, \sigma(Y, X))\). For all \(n \geq 1\), put

\[
T_n : c_0(X) \to K, (x_k)_k \to \sum_{k=1}^{n} \langle x_k, y_{nk} \rangle.
\]

\(T_n\) is continuous for all \(n \geq 1\) and \((T_n)_n\) is pointwise bounded on \(c_0(X)\), therefore \((T_n)_n\) is equicontinuous on \(c_0(X)\) (Banach-Steinhaus Theorem). There exists \(\rho > 0\) such that \(|T_n(x)| \leq \rho \|x\|_{\infty}\) for all \(x \in c_0(X)\) and for all \(n \geq 1\); therefore

\[
\sup_{n,k} \|y_{nk}\| \leq \rho < +\infty.
\]

Conversely, let \(x = (x_k)_k \in c_0(X)\) and \(\rho > 0\) such that \(\sup_{n,k} \|y_{nk}\| \leq \rho\). For all \(k \geq 1\),

\[
|\langle x_k, y_k \rangle| = \|x_k\| \|y_k\| \leq \rho \|x_k\| X \to 0,
\]

therefore \(\sum_k \langle x_k, y_k \rangle\) converges in \(K\). Let \(\varepsilon > 0\), there exists \(k_0 \geq 1\) such that:

\[
\left\{ \begin{array}{l}
\|x_k\| X \leq \frac{\varepsilon}{\rho} \text{ for all } k \geq k_0; \\
\sum_k \langle x_k, y_k \rangle \leq \varepsilon.
\end{array} \right.
\]

Let \(n_0 \geq 1\) such that \(\sum_{k < n_0} \langle x_k, y_{nk} - y_k \rangle \leq \varepsilon\) for all \(n \geq n_0\). For all \(n \geq n_0\), we have:

\[
\left| \sum_k \langle x_k, y_{nk} - y_k \rangle \right| \leq \max \left\{ \left| \sum_{k < n_0} \langle x_k, y_{nk} - y_k \rangle \right|, \left| \sum_{k \geq n_0} \langle x_k, y_{nk} \rangle \right|, \left| \sum_{k \geq n_0} \langle x_k, y_k \rangle \right| \right\} \leq \varepsilon.
\]

Therefore

\[
\lim_{n} \sum_k \langle x_k, y_{nk} \rangle = \sum_k \langle x_k, y_k \rangle.
\]

\(\square\)

Corollary 3.3. Let \(A = (y_{nk})_{n,k}\) a matrix-mapping on \(Y\); \(A\) is regular for the null sequence if, and only if:

1. For all \(k \geq 1\), \(\lim_{n} y_{nk} = 0\) in \((Y, \sigma(Y, X))\);
2. \(\sup_{n,k} \|y_{nk}\| < +\infty\).

Theorem 3.4. (Kojima-Schur) Let \(A = (y_{nk})_{n,k}\) a matrix-mapping on \(Y\); \(A\) is conservative if, and only if:

1. For all \(k \geq 1\), there exists \(y_k \in Y\) such that \(\lim_{n} y_{nk} = y_k\) in \((Y, \sigma(Y, X))\);
2. \(\sup_{n,k} \|y_{nk}\| < +\infty\);
3. For all \(n \geq 1\), \(\lim_{n} y_{nk} = 0\) in \((Y, \sigma(Y, X))\);
4. For all \(a \in X\), \(\lim_{n} \sum_k \langle a, y_{nk} \rangle \) exists in \(K\).

Under these conditions we have: for all \(x = (x_k)_k \in c(X)\),

\[
\lim_{n} \langle x, A \rangle = \lim_{n} \sum_k \langle x, y_{nk} \rangle + \sum_k \langle x_k - \lim x, y_k \rangle.
\]

\(\square\)
Proof. If A is conservative, it is conservative for null sequences. Let $a \in X$, $x = \delta(a) \in c(X)$, therefore \(\lim_{k \to \infty} \sum_k \langle a, y_{nk} \rangle \) exists; moreover, for any $n \geq 1$, $\langle a, y_{nk} \rangle \xrightarrow{k \to \infty} 0$, and then $a_{nk} = 0$ in $(Y, c(Y, X))$.

Conversely, let $x = (x_k)_k \in c(X)$; put $a = \lim x_k$ and $z = (x_k - a)_k$. $z \in c_0(X)$ and A is conservative for the null sequences (Theorem 3.2), therefore $(z, A) \in c(K)$. $(\delta(a), A) \in c(K)$, thus $(x, A) \in c(K)$ and we have \(\lim_{k \to \infty} \sum_k \langle x_k - a, y_{nk} \rangle = \sum_k \langle x_k - a, y_k \rangle \); that is to say $\lim (x, A) = \lim_{n \to \infty} \sum_k \langle x_k, y_{nk} \rangle + \sum_k \langle x_k - \lim x, y_k \rangle$. □

Corollary 3.5. Let $A = (y_{nk})_h$ a matrix-mapping on Y; A is null-conservative if, and only if:

1. For all $k \geq 1$, $\lim_{n \to \infty} y_{nk} = 0$ in $(Y, c(Y, X))$;
2. $\sup_{n,k} \|y_{nk}\| = +\infty$;
3. For all $n \geq 1$, $\lim_{k \to \infty} y_{nk} = 0$ in $(Y, c(Y, X))$;
4. For all $a \in X$, $\lim_{n \to \infty} \sum_k \langle a, y_{nk} \rangle = 0$.

Theorem 3.6. Let $A = (y_{nk})_{h,k}$ a matrix-mapping on Y, A is coercive if, and only if:

1. For all $k \geq 1$, there exists $y_k \in Y$ such that $\lim_{n \to \infty} y_{nk} = y_k$ in $(Y, c(Y, X))$;
2. For all $n \geq 1$, $\lim_{p \to \infty} \|R_{np}\| = 0$, where $R_{np} = (y_{np}, y_{np+1}, ...)$;
3. $\lim_{p \to \infty} \left\{ \sup_{n} \left\| R_{np} - R_p \right\| \right\} = 0$, where $R_p = (y_p, y_{p+1}, ...)$.

In these conditions, we have: for all $(x_k)_k \in m(X)$, $\lim_{n \to \infty} \sum_k \langle x_k, y_{nk} \rangle = \sum_k \langle x_k, y_k \rangle$.

Proof. If A is coercive, it is conservative for the null sequences we therefore have (1), (2) result of the Proposition 2.1. It remains to show (3).

Let $B = \{x \in m(X) / \|x\|_c \leq 1 \}$. On B we define the $n.a$ distance:

$$d(x, y) = \sup_k \frac{1}{2k+1} \|x_k - y_k\|_X$$

for all $x = (x_k)_k$, $y = (y_k)_k \in B$.

For all $n, m \geq 1$, we put:

$$f_{mn} : (B, d) \to K$$

$$x_k \mapsto \sum_k \langle x_k, y_{mk} - y_{nk} \rangle$$

$$\left| \sum_k \langle x_k - y_k, y_{mk} - y_{nk} \rangle \right| \leq \max \left\{ d(x, y)2^p \max_{1 \leq k \leq p} \|y_{mk} - y_{nk}\|^p, \|R_{np}\|_g, \|R_{np}\|_g \right\}.$$

Therefore f_{mn} is continuous for all $n, m \geq 1$. Let $\varepsilon > 0$, put:

$$F_{mn} = \{ x \in B / |f_{mn}(x)| \leq \varepsilon \};$$

$$E_p = \bigcap_{m,n \geq p} F_{mn}.$$

For all $p \geq 1$, E_p is closed in B.

Let \(x = (x_k)_k \in B, \langle x, A \rangle \in c(K) \), therefore there exists \(q \geq 1 \) such that \(\sum_k \langle x_k, y_{nk} - y_{nk} \rangle \leq \varepsilon \) for all \(m, n \geq q \), from which \(x \in Eq_q \), and hence \(B = \bigcup_p E_{p} \). (B, d) is complete, then from theorem of Baire-Hausdorff \(([17], \text{pp.11}), \) there exists \(q_0 \geq 1, \ a \in B \) and \(\rho > 0 \) such that \(B(x, \rho) = \{x \in B/d(x, a) \leq \rho \} \subset Eq_0 \). Let \(i \geq 1 \) such that \(\sup_{k \geq i} \frac{1}{2^{k+1}} \leq \rho \); and let \(x = (x_k)_k \in B \) and \(j \geq i \); put:

\[
\begin{cases}
 z_k = a_k & \text{if } k < i; \\
 z_k = x_k & \text{if } i \leq k \leq i + j; \\
 z_k = 0 & \text{if } k > i + j
\end{cases}
\]

\[
d(z, a) = \max\left\{\max_{1 \leq k \leq i+j} \frac{1}{2^{k+1}} \|x_k - a_k\|_X, \sup_{k \geq i+j} \frac{1}{2^{k+1}} \|a_k\|_X\right\} \leq \max\left\{\max_{1 \leq k \leq i+j} \frac{1}{2^{k+1}} \|x_k\|_X, \sup_{k \geq i+j} \frac{1}{2^{k+1}} \|a_k\|_X\right\}
\leq \sup_{k \geq i} \frac{1}{2^{k+1}} \leq \rho.
\]

Therefore \(z \in Eq_0 \), and then \(\sum_{k} |\langle z_k, y_{nk} - y_{nk} \rangle| \leq \varepsilon \) for all \(m, n \geq q_0 \) that is to say

\[
\sum_{k=i}^{i+j} |\langle z_k, y_{nk} - y_{nk} \rangle| + \sum_{k=1}^{i-1} |\langle x_k, y_{nk} - y_{nk} \rangle| \leq \varepsilon
\]

for all \(m, n \geq q_0 \). Let \(M_0 \in N \) such that \(\sum_{k=i}^{i+j} |\langle z_k, y_{nk} - y_{nk} \rangle| \leq \varepsilon \) for all \(m, n \geq M_0 \). Put \(N = \max\{M_0, q_0\} \); we have \(|\sum_{k=1}^{i+j} |\langle x_k, y_{nk} - y_{nk} \rangle| \leq \varepsilon \) for all \(m, n \geq N \). Letting \(m \to +\infty \) and taking the sup on \(x \in B \) and \(j \geq i \), we have for all \(n \geq N \) \(\|R_m - R\|_g \leq \varepsilon \) and then we have:

\[
\tag{\ast} \|R_{np} - R_p\|_g \leq \varepsilon \text{ for all } n \geq N \text{ and for all } p \geq i.
\]

For all \(n = 1, \ldots, N \lim_p \|R_{np}\|_g = 0 \), therefore there exists \(p_0 \geq i \) such that \(\|R_{np}\|_g \leq \varepsilon \) for all \(p \geq p_0 \) and for all \(n = 1, \ldots, N \).

\[
\|R_{np} - R_p\|_g \leq \max\left\{\|R_{np}\|_g, \|R_{np}\|_g, \|R_{np} - R_p\|_g\right\} \leq \varepsilon
\]

for all \(p \geq p_0 \); and then, according to (\ast\), we have \(\sup_n \|R_{np} - R_p\|_g \leq \varepsilon \) for all \(p \geq p_0 \).

Conversely, let \(x = (x_k)_k \in m(X); \sum_k |\langle x_k, y_{nk} \rangle| \) converges in \(K \) for all \(n \geq 1 \) (Proposition 2.1).

\[
\|R_p\|_g \leq \max\left\{\|R_{1p} - R_p\|_g, \|R_{1p}\|_g\right\} \xrightarrow{p \to \infty} 0,
\]

therefore \(\sum_k |\langle x_k, y_k \rangle| \) converges in \(K \). Let us show that \(\lim_n \sum_k |\langle x_k, y_{nk} \rangle| = \sum_k |\langle x_k, y_k \rangle| \).
Definition 3.9. Let \(A \) be a matrix-mapping on \(Y \); \(A \) is null-coercive if, and only if:

\[
\lim_{\|x\|_{\infty}} \|A(x)\|_{g} = 0.
\]

Then we verify that:

\[
\sum_{k} \langle x_k, y_{nk} - y_k \rangle \leq \max \left\{ \sum_{k < p_0} \langle x_k, y_{nk} - y_k \rangle, \sum_{k \geq p_0} \langle x_k, y_{nk} - y_k \rangle \right\} \leq \max \left\{ \epsilon, \|x\|_{\infty} \|R_{mp_0} - R_{p_0}\| \right\} \leq \epsilon.
\]

Corollary 3.7. Let \(A = (y_{nk})_{n,k} \) a matrix-mapping on \(Y \); \(A \) is null-coercive if, and only if:

1. For all \(k \geq 1 \), \(\lim_{n} y_{nk} = 0 \) in \((Y, \sigma(Y, X)) \);
2. For all \(n \geq 1 \), \(\lim_{p} \|R_{mp}\|_{g} = 0 \);
3. \(\lim_{p} \left\{ \sup_{n} \|R_{mp} - R_{p}\|_{g} \right\} = 0 \).

Example 3.8. Let \(X \) be a n.a Banach space over a \(p \)-adic field \(\mathbb{Q}_p \) such that \(N_X \subset N_K \), where \(p \) is a prime integer and \(N_X = \{\|x\| : x \in X\} \). Considering the following matrix-mappings on \(\mathbb{Q}_p \):

\[
A = \begin{pmatrix}
 1 & 1 & 1 & \ldots \\
 1 & 1 & 1 & \ldots \\
 1 & 1 & 1 & \ldots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \quad
B = \begin{pmatrix}
 1 & 0 & 0 & \ldots \\
 p & p^2 & 0 & \ldots \\
 p & p^2 & p^3 & 0 & \ldots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix},
\]

\[
C = \begin{pmatrix}
 1 & 1 & 1 & \ldots \\
 p & p & p & \ldots \\
 p^2 & p^2 & p^2 & \ldots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \quad
D = \begin{pmatrix}
 1 & 0 & 0 & \ldots \\
 p & p & 0 & \ldots \\
 p^2 & p^2 & p^2 & 0 & \ldots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix},
\]

\[
E = \begin{pmatrix}
 1 & 0 & 0 & \ldots \\
 -p^2 & p^2 & 1 & \ldots \\
 -p^3 & p^3 & -p^3 & \ldots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \quad
F = \begin{pmatrix}
 p & p^2 & p^3 & \ldots \\
 p & p^2 & p^3 & \ldots \\
 p & p^2 & p^3 & \ldots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \quad
G = \begin{pmatrix}
 p & p^2 & p^3 & \ldots \\
 p & p^2 & p^3 & \ldots \\
 p & p^2 & p^3 & \ldots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.
\]

Then we verify that:

\(A \) is conservative for the null sequences but not conservative,
\(B \) is conservative but not null conservative,
\(C \) is regular for the null sequences but not null conservative,
\(D \) is null conservative,
\(E \) is regular,
\(F \) is coercive but not null coercive,
\(G \) is null coercive.

Definition 3.9. Let \(A = (y_{nk})_{n,k} \) a matrix-mapping on \(Y \) and \(f \in X^* \); we say that \(A \) is \(f \)–regular if \(A \) is conservative and for all \(x \in c(X) \) \(\lim (x, A) = f(\lim x) \).

We have the following theorem of Toeplitz-Silverman type:
Theorem 3.10. (Toeplitz-Silverman) Let $A = (y_{nk})_{n,k}$ a matrix-mapping on Y and f a linear form on X; A is f-regular if, and only if:

1. For all $k \geq 1$, $\lim_{n} y_{nk} = 0$ in $(Y, \sigma(Y, X))$;
2. $\sup_{n,k} \|y_{nk}\| < +\infty$;
3. For all $a \in X$, $\lim_{n} \sum_{k} \langle a, y_{nk} \rangle = f(a)$;
4. For all $n \geq 1$, $\lim_{k} y_{nk} = 0$ in $(Y, \sigma(Y, X))$.

Proof. If A is f-regular, it is regular for null sequences, and so we have (1) and (2) (Corollary 3.3). For all $a \in X$, $\delta(a) \in c(X)$ therefore, on the one hand, $\lim_{n} \langle a, y_{nk} \rangle = 0$ for all $n \geq 1$, and then $\lim_{k} y_{nk} = 0$ in $(Y, \sigma(Y, X))$, and on the other, $\lim_{n} \sum_{k} \langle a, y_{nk} \rangle = f(a)$.

Conversely, A is conservative (Theorem 3.4). Let $x = (x_{k})_{k} \in c(X)$; put $a = \lim_{k} x_{k} \cdot (x_{k} - a) \in c_{0}(X)$, therefore $\lim_{n} \sum_{k} \langle x_{k} - a, y_{nk} \rangle = 0$ (Theorem 3.2), and then $\lim_{n} \sum_{k} \langle x_{k} - y_{nk} \rangle = \lim_{n} \sum_{k} \langle a, y_{nk} \rangle = f(a)$. □

Definition 3.11. Let A a matrix-mapping on Y; we say that A is:

1. c_{0}-permanent if for all $x \in c_{0}(X)$, $(x, A) \in m(K)$;
2. c-permanent if for all $x \in c(X)$, $(x, A) \in m(K)$;
3. m-permanent if for all $x \in m(X)$, $(x, A) \in m(K)$.

A is m-permanent $\Rightarrow A$ is c-permanent $\Rightarrow A$ is c_{0}-permanent.

Theorem 3.12. Let $A = (y_{nk})_{n,k}$ a matrix-mapping on Y; A is c_{0}-permanent if, and only if $\sup_{n,k} \|y_{nk}\| < +\infty$.

Proof. Suppose that A is c_{0}-permanent; for all $n \geq 1$ put $T_{n} : c_{0}(X) \rightarrow K$, $(x_{k})_{k} \rightarrow \sum_{k} \langle x_{k}, y_{nk} \rangle$. $T_{n} \in c_{0}(X)'$ for all $n \geq 1$ and the sequence $(T_{n})_{n}$ is pointwise bounded on $c_{0}(X)$, then it is equicontinuous on $c_{0}(X)$. Let $\rho > 0$ such that $|T_{n} - x| \leq \rho \|x\|_{c_{0}}$ for all $x \in c_{0}(X)$ and for all $n \geq 1$. Therefore $\sup_{n,k} \|y_{nk}\| \leq \rho$.

Conversely, let $x = (x_{k})_{k} \in c_{0}(X)$, for all $n \geq 1$, $\sum_{k} \langle x_{k}, y_{nk} \rangle$ converges in K (Proposition 2.1). Let $\lambda \in K$ such that $\|x\|_{c_{0}} \leq |\lambda|$, we have $\sup_{n} \left\| \sum_{k} \langle x_{k}, y_{nk} \rangle \right\| \leq |\lambda| \sup_{n,k} \|y_{nk}\| < +\infty$. Therefore $(x, A) \in m(K)$. □

Corollary 3.13. Let $A = (y_{nk})_{n,k}$ a matrix-mapping on Y, A is c-permanent if, and only if:

1. $\sup_{n,k} \|y_{nk}\| < +\infty$;
2. For all $n \geq 1$, $\lim_{k} y_{nk} = 0$ in $(Y, \sigma(Y, X))$.

Corollary 3.14. Let $A = (y_{nk})_{n,k}$ a matrix-mapping on Y, A is m-permanent if, and only if:

1. $\sup_{n,k} \|y_{nk}\| < +\infty$;
2. For all $n \geq 1$, $\lim_{p} \|R_{np}\| = 0$.

Example 3.15. Let X be a n.a Banach space over a p−adic field Q_p such that $N_X \subseteq N_K$, where p is a prime integer. Considering the following matrix-mappings on Q_p:

$$H = \begin{pmatrix} -p & -p & -p & \ldots \\ -p & -p & p & \ldots \\ \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \quad I = \begin{pmatrix} -p & p & p & \ldots \\ p & p & p & \ldots \\ \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

H is $c_0(X)$−permanent but not $c(X)$−permanent and not conservative for the null sequences.
I is $m(X)$−permanent then it is $c(X)$−permanent but not conservative and not coercive.

4. Topological Characterization

We denote $CN(Y), C(Y), NC(Y), C_0(Y), NC_0(Y), RN(Y), R_f(Y), C_0\mathcal{P}(Y), c\mathcal{P}(Y)$ and $m\mathcal{P}(Y)$ the spaces of matrix-mappings on Y conservatives for the null sequences, conservatives, null-conservatives, coercives, null-coercives, regulars for the null sequences, f−regulars, c_0−permanents, c−permanents and m−permanents respectively.

We have the following of inclusion diagram:

$$\begin{array}{cccc}
NC_0(Y) & \rightarrow & C_0(Y) & \rightarrow & m\mathcal{P}(Y) \\
\downarrow & & \uparrow & & \downarrow \\
RN(Y) & \leftarrow & c_0\mathcal{P}(Y) & \leftarrow & C\mathcal{P}(Y) \\
\downarrow & & \uparrow & & \downarrow \\
NC(Y) & \rightarrow & CN(Y) & \rightarrow & R_f(Y) \\
\end{array}$$

Let $A \in c_0\mathcal{P}(Y)$, we put $H(A) = \sup_{n,k} \|y_{nk}\|$. H is a n.a norm on $c_0\mathcal{P}(Y)$.

Theorem 4.1. ($c_0\mathcal{P}(Y), H$) is a n.a Banach space.

Proof. Let $(A^r)_r$, a Cauchy sequence in ($c_0\mathcal{P}(Y), H$), with $A^r = (y_{nk}^r)_r$ for all $r \geq 1$. We have: for all $\varepsilon > 0$, there exists $r_0 \geq 1$ such that for all $r, s \geq r_0$, $\|y_{nk}^r - y_{nk}^s\| \leq \varepsilon$ for all $n, k \geq 1$ (\ast). Therefore $(y_{nk}^r)_r$ is uniformly of Cauchy sequence on n, k in $(Y, \sigma(Y, X))$; there exists $y_{nk} \in Y$ such that $y_{nk}^r \xrightarrow{\text{r} \to \infty} y_{nk}$ uniformly on n, k in $(Y, \sigma(Y, X))$. Put $A = (y_{nk})_{n,k}$. By letting s to ∞ in (\ast), we will $A^r \xrightarrow{\text{r} \to \infty} A(H)$.

It remains to show that $A \in c_0\mathcal{P}(Y)$.

For all $n, k \geq 1$ $\|y_{nk}\| \leq \max_{n,k} \{\|y_{nk}^r - y_{nk}\|, \|y_{nk}^0\|\}$.

$$\Rightarrow \sup_{n,k} \|y_{nk}\| \leq \max \{\varepsilon, H(A^0)\} < +\infty.$$

\square

Corollary 4.2. ($c\mathcal{P}(Y), H$) is a n.a Banach space.

Proof. It suffices to show that $c\mathcal{P}(Y)$ is a closed subspace of ($c_0\mathcal{P}(Y), H$). Let $(A^r)_r$, a sequence in $c\mathcal{P}(Y)$ and $A \in c_0\mathcal{P}(Y)$ such that $A^r \xrightarrow{r \to \infty} A$, with $A^r = (y_{nk}^r)_r$ for all $r \geq 1$ and $A = (y_{nk})_{n,k}$.

Let $r_0 \geq 1$ such that $H(A^{r_0} - A) \leq 1$; $H(A) \leq \max \{H(A^{r_0} - A), H(A^n)\} < +\infty$. ($y_{nk}^r$), converges uniformly on n, k to y_{nk}^r in $(Y, \sigma(Y, X))$. Let $n \geq 1$, $\lim_{k \to \infty} y_{nk}^r = \lim_{k \to \infty} y_{nk}^r = \lim_{k \to \infty} y_{nk}^r = 0$ (Lemma 2.2). Therefore $A \in c_0\mathcal{P}(Y)$ (Corollary 3.7). \square
We also show that all other spaces listed in the diagram above are closed subspaces of \((c_0\mathcal{P}(Y), H)\) and therefore they are \(n.a\) Banach spaces.

5. Algebras of Matrix-Mappings

Definition 5.1. Let \(E\) an algebra over \(K\) having a unitary element \(e\); we say that \(E\) is a \(n.a\) Banach algebra if there exists a \(n.a\) norm \(\|\cdot\|\) on \(E\) such that \((E, \|\cdot\|)\) is a \(n.a\) Banach space and it verifies:

1. \(\|e\| = 1;\)
2. For all \(x, y \in E, \|x y\| \leq \|x\| \|y\|\).

Let \((X, \|\cdot\|_X)\) and \((Y, \|\cdot\|_Y)\) two \(n.a\) Banach algebras with unitary element \(e_X, e_Y\) respectively put in separating duality \((X, Y)\); if \(A = (x_{nk})_{n,k} \in \mathcal{M}(X)\) and \(B = (y_{nk})_{n,k} \in \mathcal{M}(Y)\), we put \(A.B = (\lambda_{nk})_{n,k}\), with \(\lambda_{nk} = \sum_j \langle x_{nj}, e_Y \rangle \langle e_X, y_{jk} \rangle\) for all \(n, k \geq 1\) where there is.

Proposition 5.2. If \(A = (x_{nk})_{n,k} \in c\mathcal{P}(X)\) and \(B = (y_{nk})_{n,k} \in c_0\mathcal{P}(Y)\), \(A.B\) exists.

Proof. Let \(n, k \geq 1\);

\[
\lim j \langle x_{nj}, e_Y \rangle \langle e_X, y_{jk} \rangle \leq \|y_{jk}\| \|\langle x_{nj}, e_Y \rangle\| \rightarrow 0 \quad \text{(Corollary 3.7)},
\]

therefore \(\sum_j \langle x_{nj}, e_Y \rangle \langle e_X, y_{jk} \rangle\) converges. \(\square\)

Proposition 5.3. If \(A = (x_{nk})_{n,k} \in \mathcal{P}(X)\) and \(B = (y_{nk})_{n,k} \in \mathcal{P}(Y)\), \(A.B \in \mathcal{P}(K)\).

Proof. \(A.B\) exists (Proposition 5.2).

\[
\sup_{n,k} \left| \sum_j \langle x_{nj}, e_Y \rangle \langle e_X, y_{jk} \rangle \right| \leq \left(\sup_{n,j} \left| \langle x_{nj}, e_Y \rangle \right| \left(\sup_{j,k} \|y_{jk}\| \right) \right) < +\infty.
\]

Let \(n \geq 1\);

\[
\lim j \langle x_{nj}, e_Y \rangle \langle e_X, y_{jk} \rangle \leq \|y_{jk}\| \|\langle x_{nj}, e_Y \rangle\| \rightarrow 0 \quad \text{uniformly on } k \quad \text{(Corollary 3.7)}.
\]

Let \(j \geq 1\);

\[
\lim k \sum_j \langle x_{nj}, e_Y \rangle \langle e_X, y_{jk} \rangle = \sum_j \lim k \langle x_{nj}, e_Y \rangle \langle e_X, y_{jk} \rangle = \sum_j \langle x_{nj}, e_Y \rangle \langle e_X, y_{jk} \rangle = 0.
\]

Therefore \(A.B \in \mathcal{P}(Y)\). \(\square\)

Proposition 5.4. If \(A = (x_{nk})_{n,k} \in m\mathcal{P}(X)\) and \(B = (y_{nk})_{n,k} \in m\mathcal{P}(Y)\), \(A.B \in m\mathcal{P}(K)\).

Proof. It suffices to show that \(\lim k \sum_j \langle x_{nj}, e_Y \rangle \langle e_X, y_{jk} \rangle = 0\) for all \(n \geq 1\). Let \(\rho > 0\) such that \(\sup_{j,k} \|y_{jk}\| \leq \rho\).

Let \(n \geq 1\);

\[
\lim j \langle x_{nj}, e_Y \rangle \langle e_X, y_{jk} \rangle \leq \rho \|x_{nj}\| \|\langle e_X, y_{jk} \rangle\| \rightarrow 0 \quad \text{uniformly on } k \quad \text{(Corollary 3.13)}.
\]

For all \(j \geq 1\);

\[
\lim k \sum_j \langle x_{nj}, e_Y \rangle \langle e_X, y_{jk} \rangle \leq \|x_{nj}\| \|y_{jk}\| \|\langle e_X, y_{jk} \rangle\| \rightarrow 0 \quad \text{uniformly on } k.
\]

Therefore \(A.B \in m\mathcal{P}(Y)\). \(\square\)

Using the same techniques, we show:
Corollary 5.8. Let x be a sequence in Q_p.

Example 5.7. Let Q be a sequence in Q_p.

Proof. If $A \in C_0(X)$ and $B \in C_0(Y)$, then $A \cdot B \in C_0(K)$.

Theorem 5.5. $(cP(K), H)$ is a Banach algebra.

Proof. $cP(K)$ is an algebra admitting the identity matrix I as a unitary element. $(cP(K), H)$ is a Banach space (Corollary 4.2), and we have: $H(I) = 1$ and $H(A \cdot B) \leq H(A)H(B)$ for all $A, B \in cP(K)$.

We show that $mP(K)$, $C(K)$, $\mathcal{R}N(K)$ and $\mathcal{C}N(K)$ are Banach subalgebras of $(cP(K), H)$.

Proposition 5.6. Let $A \in cP(K)$ and $\lambda \in K$ such that $|\lambda| < \frac{1}{H(A)}$, then $I + \lambda A$ and $I - \lambda A$ are nonsingular in $cP(K)$.

Proof. $H((-\lambda)^n A^n) \leq (|\lambda| H(A))^n \rightarrow 0$, therefore the series $B = \sum_{n=0}^{\infty} (-\lambda)^n A^n$ and $C = \sum_{n=0}^{\infty} \lambda^n A^n$ converge in $cP(K)$, and we have:

$(I + \lambda A) B = B (I + \lambda A) = I$;
$(I - \lambda A) C = C (I - \lambda A) = I$.

We have the same result for $mP(K)$, $C(K)$, $\mathcal{R}N(K)$ and $\mathcal{C}N(K)$.

Example 5.7. Let Q_p be the p–adic field, where p is a prime integer; considering the following matrix-mappings on Q_p:

$$A = \begin{bmatrix}
p & 0 & 0 & 0 & \cdots
p^2 & p & 0 & 0 & \cdots
p^3 & p^2 & p & 0 & \cdots
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}, \quad B = \begin{bmatrix}
p & 0 & 0 & 0 & \cdots
p^2 & p & 0 & 0 & \cdots
p^3 & p^2 & p & 0 & \cdots
\vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}, \quad C = \begin{bmatrix}
p & p^2 & p^3 & \cdots
p^2 & p^3 & p^4 & \cdots
p^3 & p^4 & p^5 & \cdots
\vdots & \vdots & \vdots & \ddots
\end{bmatrix}.$$

A is conservative for the null sequences.
B is conservative.
C is regular for the null sequences.

Corollary 5.8. Let $x = (x_k)_k \in \omega(Q_p)$ and $\lambda \in Q_p$ such that $|\lambda| < 1$.

1. If the sequence of general term $y_n = \lambda p \sum_{k=1}^{n-1} x_k + (1 + \lambda p)x_n$ converges to 0 in Q_p, the sequence $(x_k)_k$ converges in Q_p.

2. If the sequence of general term $y_n = \lambda \sum_{k=1}^{n-1} x_k + (1 + \lambda p^n)x_n$ converges in Q_p, the sequence $(x_k)_k$ converges in Q_p.

3. If the sequence of general term $y_n = \lambda p^n \sum_{k \neq n} x_k + (1 + \lambda p^n)x_n$ converges to 0 in Q_p, the sequence $(x_k)_k$ converges to 0 in Q_p.

Proof. (1) \((y_k)_k = (I + \lambda A)(x_k)_k; H(A) = \sup_{k \geq 1} |p|^k = \frac{1}{p},\) therefore \(|\lambda| < \frac{1}{H(A)},\) and then \((I + \lambda A)\) is nonsingular in \(CN(Q_p).\) There exists \(A' \in CN(Q_p)\) such that \(A' = (I + \lambda A)^{-1}.\) \((x_k)_k = A'(y_k)_k\) and then \((x_k)_k \in c(Q_p).\)

(2) \((y_k)_k = (I + \lambda B)(x_k)_k\) and \((I + \lambda B)\) is nonsingular in \(C(Q_p).\)

(3) \((y_k)_k = (I + \lambda C)(x_k)_k\) and \((I + \lambda C)\) is nonsingular in \(RN(Q_p).\)

6. Conclusion

In this work we gave a generalization of Kojima-Schur and Toeplitz-Silverman theorems for conservative and \(f\)-regular matrix-mappings in separated duality \((X, Y),\) where \(X\) and \(Y\) are respectively a Banach space and vector space over a non-archimedean valued field \(K.\) We are also defined at the same other matrix-mappings and established others results characterizing them. We have provided space for conservative matrix-mappings and space for conservative for the null sequences matrix-mappings with a topology and we have demonstrated that they are non-archimedean Banach spaces. Some applications to spaces of non-archimedean scalar matrix-mappings were given. However a natural question arises:

Is what one can generalize these results at spaces of matrix-mappings on locally \(K-\) convex spaces?

References

